We can make some substitutions here using some of the derivation on the previous board which will give us the Planck constant divided by 2 pi mass of the electron times the Bohr radius.
在这里我们也可以,用我以前在黑板上写过的一些词来取代它,得到的是普朗克常数除以2π电子质量,再乘以波尔半径。
So if I try to rotate my 2 atoms, you see that I have to break that pi bond, because they need to be lined up so that the electron density can overlap.
如果我要试着转动两个原子,你会看到我必须要打破一个π键,因为他们需要连接起来,让那些电子能够重叠。
Square of the Planck constant times pi mass of the electron.
普朗克常量的平方,乘以π再乘电子的质量。
So pi bonds have electron density both above and below the bond axis, but they actually have a nodal plane at this z, this bond axis here.
键在键轴之上,和之下都有电子密度,但它们在z方向有节面,这是键轴的地方。
n So the velocity is given by this product of the quantum number n Planck constant 2 pi mass of the electron time the radius of the orbit, which itself is a function of n.
速度是量子数,普朗克常数2π乘以轨道半径的值,它自身也是n的函数。
应用推荐