• We can make some substitutions here using some of the derivation on the previous board which will give us the Planck constant divided by 2 pi mass of the electron times the Bohr radius.

    在这里我们也可以,用我以前在黑板上写过的一些词来取代它,得到的是普朗克常数除以2π电子质量,再乘以波尔半径。

    麻省理工公开课 - 固态化学导论课程节选

  • So if I try to rotate my 2 atoms, you see that I have to break that pi bond, because they need to be lined up so that the electron density can overlap.

    如果我要试着转动两个原子,你会看到我必须要打破一个π键,因为他们需要连接起来,让那些电子能够重叠。

    麻省理工公开课 - 化学原理课程节选

  • Square of the Planck constant times pi mass of the electron.

    普朗克常量的平方,乘以π再乘电子的质量。

    麻省理工公开课 - 固态化学导论课程节选

  • So pi bonds have electron density both above and below the bond axis, but they actually have a nodal plane at this z, this bond axis here.

    键在键轴之上,和之下都有电子密度,但它们在z方向有节面,这是键轴的地方。

    麻省理工公开课 - 化学原理课程节选

  • n So the velocity is given by this product of the quantum number n Planck constant 2 pi mass of the electron time the radius of the orbit, which itself is a function of n.

    速度是量子数,普朗克常数2π乘以轨道半径的值,它自身也是n的函数。

    麻省理工公开课 - 固态化学导论课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定