Anyway, if you go to your Periodic Table you will find that on the one side you can get what is called the enthalpy of atomization.
如果你看元素周期表,你会在这一侧发现,这是原子化焓。
The one problem that we run into is as we go to more and more atoms on the table, as we add on electrons, the Schrodinger equation is going to get more complicated.
我们将会遇到的一个问题,是当我们处理周期表中越来越多的原子时,当我们增加了电子,薛定谔方程,变得愈加复杂。
The only thing that's different is that they're one down on the periodic table, potassium is down one row, so it's going to be a little bigger, but when we're thinking about size, it maybe does not seem that significant to talk about the size.
它们唯一的不同点,就在于其中一个在周期表的下面,钾在下一行,因此它要稍微大一些,但是当我们考虑尺寸的时候,似乎讨论尺寸的意义不大。
And that's all that's big enough to pass through or small enough to pass through. And if we go up even just one row on the periodic table to potassium, what we actually see is now that it's going to be too large, and, in fact, a potassium solvated with one water molecule won't go through our channel.
就是这样刚好大到它通过,或者说刚好小到它通过,即使我们再沿着周期表往下走仅仅一行到钾离子,我们看到的就将是它的个头太大了,实际上,溶解于一个水分子的单个钾离子,不能穿过我们的通道。
应用推荐