• The experts at N.I.H.say you may have to repeat this process a few times.

    VOA: special.2010.03.31

  • Ah, n times, because for each value of i, I'm going to do that m thing, n*m so that is, close to what you said, right?

    因此这就和你说的差不多了对不对?,这个问题的复杂度为,让我写下来,是-对不对,是?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • So I have n operations log n times, n log n there we go, n log n. Took us a long time to get there, but it's a nice algorithm to have.

    所以我log,n遍的n次操作,就得到了,虽然花了不少时间得到了这个结论。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • But that merging process only takes N steps, N*log N so that's N times log of N. Now, it's a little tricky to reason through this perhaps the first time, let's just take a very simple example and see if we can do a little sanity check here.

    但这个合并过程只需要N步,所以时间复杂度是,第一次对此进行推论可能会有点儿棘手,我们举一个简单的例子,看看我们能否做一些完整性的检查。

    哈佛公开课 - 计算机科学课程节选

  • So instead of being equal to negative z squared, now we're equal to negative z effective squared times r h all over n squared.

    这里不再等于-z的平方,现在我们等于-有效的z的平方,乘以RH除以n的平方。

    麻省理工公开课 - 化学原理课程节选

  • Times the square of the elementary Z charge times n squared over Z.

    乘以元电荷的平方,乘以n的平方除以。

    麻省理工公开课 - 固态化学导论课程节选

  • And in this case, we go from 8 to 4 to 2 to 1 three times and then on each iteration of this algorithm, each pass across the board I'm touching N numbers, so that means I'm doing N things, log N times.

    在这个例子中,我们从8得到4,到2,再到1,是3次,在这个算法的每次迭代中,每一趟我都会操作N个数,也就是所我每次要做N步操作,一共要做,log,N,次。

    哈佛公开课 - 计算机科学课程节选

  • n So I've got to do n things n times.

    所以就是做n次。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • The order complexity here, if I actually write it would be-- sorry, order n times m, and if m was equal to n, that would be order n squared, and this is quadratic.

    如果m等于n的话,也就是n的平方,这是一个平方复杂度的问题,这是和前面不同类型的,好,我在做什么呢?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • So if I start off with a list of length n, how many times can I divide it by 2, until I get to something no more than two left?

    我能够除以多少次2呢?,直到我得到的长度不超过2么?,对数次,对吧?就像刚才那位同学说的那样?

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • N Well, here is a list of size N. How many times can you divide a list of size N by 2, right?

    这是一个大小为N的列表,将一个大小为,的列表除以2需要几次呢?

    哈佛公开课 - 计算机科学课程节选

  • k * n m plus k all times log n is in general going to be much better than k times n.

    在普遍情况下要远远好于,实际情况要取决于n和k的取值。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • And that's going to be equal to negative z effective squared times r h over n squared.

    有效的z的平方,乘以RH除以n的平方。

    麻省理工公开课 - 化学原理课程节选

  • So, we can get from these energy differences to frequency h by frequency is equal to r sub h over Planck's constant 1 times 1 over n final squared minus 1 over n initial squared.

    所以我们通过不同能量,得到不同频率,频率等于R下标,除以普朗克常数乘以1除以n末的平方减去。

    麻省理工公开课 - 化学原理课程节选

  • In the linear case, meaning in the unsorted case what's the complexity of this? k times n, right? Order n to do the search, and I've got to do it k times, so this would be k times n.

    复杂度是多少?k的n次方,对吧?,在序列n中做搜索,要做k次,所以是k的n次方次,如果先排序后搜索。

    麻省理工公开课 - 计算机科学及编程导论课程节选

  • So, if we just rearrange this equation, what we find is that z effective is equal to n squared times the ionization energy, IE all over the Rydberg constant and the square root of this.

    我们可以发现有效的z等于n的平凡,乘以电离能除以里德堡常数,这些所有再开方,所以等于n乘以,除以RH整体的平方根。

    麻省理工公开课 - 化学原理课程节选

  • N 6 Sixteen, so that's 16 times log base 2 of 16 and though I'm writing small here, log base 2 of 16, 16 this gives me 4 'cause 2 to the 4 equals 16.

    是多少呢?,Well,,N,is,what?,16,那就是16乘以以2为底16的对数6,在这儿我将2写小一些,以2为底16的对数是4,因为2^4等于。

    哈佛公开课 - 计算机科学课程节选

  • How many times you can divide N by 2 before you get down to 1?

    在得到1之前需要将N除以2做几次呢?

    哈佛公开课 - 计算机科学课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定