• And we saw that, you saw that the Joule coefficient for an ideal gas was zero.

    我们会发现,你们也会发现,理想气体的焦耳系数是零。

    麻省理工公开课 - 热力学与动力学课程节选

  • This is real, unlike the Joule coefficient which is very small so that most gases have tiny Joule coefficients. So if you do a Joule experiment, you hardly measure a temperature change. With real gases, here you do actually measure it. You can feel it with your finger on your bicycle tire.

    系数那样小以至于,大多数气体的焦耳系数,都很小,所以如果你做焦耳实验,很难测量出温度的变化,对于真实气体,你可以测量它,你能通过手指按在,自行车轮胎上来感觉到它。

    麻省理工公开课 - 热力学与动力学课程节选

  • And if that's equal to zero, that means that the Joule-Thomson coefficient for an ideal gas is also equal to zero. We're going to actually prove this later in the course.

    说明理想气体的,焦耳-汤姆逊系数也等于0。,详细的证明过程,会在以后的课上给出。

    麻省理工公开课 - 热力学与动力学课程节选

  • The Joule-Thomson coefficient is equal to zero.

    焦耳-汤姆逊系数等于。

    麻省理工公开课 - 热力学与动力学课程节选

  • but right now you're going to have to take it for granted. So, if the Joule-Thomson coefficient is equal to zero, just like we wrote, du = Cv dT du = Cv dT for an ideal gas, we're going to dH = Cp dT have dH = Cp dT for an ideal gas as well.

    但是现在请你们应该把它看成理所当然的,所以,如果焦耳-汤姆逊系数等于零,就像我们写的,对于理想气体,我们也可以得到对于理想气体。

    麻省理工公开课 - 热力学与动力学课程节选

  • And so they defined them, p after many experiments, the limit of this 0 delta T delta p and the limit of delta p goes to zero as the Joule-Thomson coefficient.

    他们定义了这些量,以及它们的范围,ΔT比Δ,Δp的极限趋近于,叫做焦耳-汤姆逊系数。

    麻省理工公开课 - 热力学与动力学课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定