And we saw that, you saw that the Joule coefficient for an ideal gas was zero.
我们会发现,你们也会发现,理想气体的焦耳系数是零。
This is real, unlike the Joule coefficient which is very small so that most gases have tiny Joule coefficients. So if you do a Joule experiment, you hardly measure a temperature change. With real gases, here you do actually measure it. You can feel it with your finger on your bicycle tire.
系数那样小以至于,大多数气体的焦耳系数,都很小,所以如果你做焦耳实验,很难测量出温度的变化,对于真实气体,你可以测量它,你能通过手指按在,自行车轮胎上来感觉到它。
And if that's equal to zero, that means that the Joule-Thomson coefficient for an ideal gas is also equal to zero. We're going to actually prove this later in the course.
说明理想气体的,焦耳-汤姆逊系数也等于0。,详细的证明过程,会在以后的课上给出。
The Joule-Thomson coefficient is equal to zero.
焦耳-汤姆逊系数等于。
but right now you're going to have to take it for granted. So, if the Joule-Thomson coefficient is equal to zero, just like we wrote, du = Cv dT du = Cv dT for an ideal gas, we're going to dH = Cp dT have dH = Cp dT for an ideal gas as well.
但是现在请你们应该把它看成理所当然的,所以,如果焦耳-汤姆逊系数等于零,就像我们写的,对于理想气体,我们也可以得到对于理想气体。
And so they defined them, p after many experiments, the limit of this 0 delta T delta p and the limit of delta p goes to zero as the Joule-Thomson coefficient.
他们定义了这些量,以及它们的范围,ΔT比Δ,Δp的极限趋近于,叫做焦耳-汤姆逊系数。
应用推荐