So, as an example, let's take argon, I've written up the electron configuration here, and let's think about what some of the similarities might be between wave functions in argon and wave functions for hydrogen.
所以作为一个例子我们来看看氩,我已经把它的电子构型写在这里,我们来考虑氩和,氢波函数之间的,一些相似性。
And we also, when we solved or we looked at the solution to that Schrodinger equation, what we saw was that we actually needed three different quantum numbers to fully describe the wave function of a hydrogen atom or to fully describe an orbital.
此外,当我们解波函数,或者考虑薛定谔方程的结果时,我们看到的确3个不同的量子数,完全刻画了氢原子,的波函数或者说轨道。
I have yet to show you the solution to a wave function for the hydrogen atom, so let me do that here, and then we'll build back up to probability densities, and it turns out that if we're talking about any wave function, we can actually break it up into two components, which are called the radial wave function and angular wave function.
我还没有给你们看过,氢原子波函数的解,让我现在给你们看一下,然后再来说,概率密度,实际上,对于任何一个波函数来说,我们可以把它,分解为两部分,分别叫做径向波函数,和角向波函数。
Similarly, with the second hydrogen atom, we've got the nucleus in the middle, and the 1 s b wave function around it.
类似的,在第二个氢原子里面,我们在中间有原子核,周围有1sb波函数。
应用推荐