• Because what it tells is that we can figure out exactly what the radius of an electron and a nucleus are in a hydrogen atom.

    我们可以,准确的算出,氢原子中,电子。

    麻省理工公开课 - 化学原理课程节选

  • We're going to be looking at the solutions to the Schrodinger equation for a hydrogen atom, and specifically we'll be looking at the binding energy of the electron to the nucleus.

    我们将研究下氢原子薛定谔方程的解,特别是电子和核子的结合能,我们将研究这部分。

    麻省理工公开课 - 化学原理课程节选

  • That is the electron in its lowest orbit, to the nucleus of atomic hydrogen.

    那就是氢原子原子核外电子,最低轨道到情况。

    麻省理工公开课 - 固态化学导论课程节选

  • And what is discussed is that for a 1 s hydrogen atom, that falls at an a nought distance away from the nucleus.

    我们讨论了对于氢原子1s轨道,它的最可能半径在距离原子核a0处。

    麻省理工公开课 - 化学原理课程节选

  • So again, what we're saying here is that it is most likely in the 3 s orbital that we would find the electron 11 and 1/2 times further away from the nucleus than we would in a around state hydrogen atom.

    同样我们,这里说的是,氢原子3s轨道中,最可能找到电子的地方,是基态的11.5倍。

    麻省理工公开课 - 化学原理课程节选

  • What I want to point out also is that this h hat, the Hamiltonian operator written out for the simplest case we can even imagine, which is a hydrogen atom where we only have one electron that we're dealing with, and of course, one nucleus.

    我也想指出的是,我们能想到的最简单情况,的哈密顿算符,是一个只有一个电子,也只有一个原子核的氢原子。

    麻省理工公开课 - 化学原理课程节选

  • So when we talk about the size of multi-electron orbitals, they're actually going to be smaller because they're being pulled in closer to the nucleus because of that stronger attraction because of the higher charge of the nucleus in a multi-electron atom compared to a hydrogen atom.

    所以当我们讨论,多电子轨道的尺寸,它们实际上会变得更小,因为多电子原子的原子核,相比于氢原子,有更高的电荷量所以,有更强的吸引力,所以可以拉的更近。

    麻省理工公开课 - 化学原理课程节选

  • We've got a lot of constants in this solution to the hydrogen atom, and we know what most of these mean. But remember that this whole term in green here is what is going to be equal to that binding energy between the nucleus of a hydrogen atom and the electron.

    在这个解中有很多常数,其中大部分我们,都知道它们代表的意思,但记住是这整个绿色的部分,等于核子和电子的结合能。

    麻省理工公开课 - 化学原理课程节选

  • so when we think about what it is that this radial probability distribution is telling us, it's telling us that it is most likely that an electron in a 2 s orbital of hydrogen is six times further away from the nucleus than it is in a 1 s orbital.

    我们来讨论一下这个径向概率分布,告诉了我们什么,它告诉我们,对于氢原子2s轨道的电子,最可能位置是1s轨道的6倍。

    麻省理工公开课 - 化学原理课程节选

  • So in hydrogen atom a, I'll depict that here where the nucleus is this dot, and then the circle is what I'm depicting as the wave function.

    在氢原子A里,我在这里把原子核画成一个点,这圆就是波函数。

    麻省理工公开课 - 化学原理课程节选

  • This e term here is the energy, or in our case when we talk about an electron in a hydrogen atom, for example, the binding energy of that electron to the nucleus.

    这里的“E“是指能量,或者在我们谈论一个,氢原子的电子时,举例来说,是电子对于原子核的结合能。

    麻省理工公开课 - 化学原理课程节选

  • Similarly, with the second hydrogen atom, we've got the nucleus in the middle, and the 1 s b wave function around it.

    类似的,在第二个氢原子里面,我们在中间有原子核,周围有1sb波函数。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定