So do you think noble gases would have a high positive electron affinity, a low positive, or negative electron affinity?
那么,你认为稀有气体的电子亲和能,应该是一个高的正值,一个低的正值,还是一个负值?
But I expect that like many of our students here that's just one of multiple affinity groups you might have chosen to become part of.
但,我说的没错的话,跟许多别的学生一样,那只是你能够选择的,许多兴趣小组之一。
- So most of you recognize, if we switch back to the notes, that they do have a negative electron affinity.
看来大部人都想到了,如果你翻翻讲义的话,它们的电子亲和能确实是负的。
That is also an advantage of using them as gene therapy vehicles because they will only infect cells that they are - that they have an affinity for or that they're prone to affect.
非常有利于将其,作为基因治疗的载体使用,因为它们只能感染那些--,它们对之具有亲和性,或者说它们倾向于去感染的细胞
So, basically any time we have a really high positive number of electron affinity, it means that that atom or ion really wants to gain another electron, and it will be very stable and happy if it does so.
因此,基本上无论什么时候,只要我们有一个很大的正的电子亲和能,这就意味着这个原子,或离子非常希望得到一个电子,如果它得到了,会变得更稳定更开心。
So if we think about the upper right hand part of the quadrant, well, this is where we're going to have high electron affinity and high ionization energy, so we're also going to see high electronegativity here.
那么让我们来看看右上方的部分,好,在这里我们将会有高的电子亲和能,与高的电离能,因此我们会看到这里的电负性也很高。
That's a very large number, it's all relative, so you don't necessarily know it's large without me telling you or giving you other ions to compare to, but chlorine does have a very large affinity, meaning it's really likes getting an electron and becoming a chlorine ion.
这是个非常大的数值,这种数值都是相对的,因此你不一定能知道这是非常大的,除非我告诉你或给你另外离子数值作为参考,但是氯确实有很高的电子亲和能,这意味着它非常乐意得到一个电子,而变成一个氯离子。
So, we were talking, however, about energy in terms of electron affinity, so we can actually relate electron affinity to any reaction by saying if we have this reaction written as here where we're gaining an electron, we say that electron affinity is just equal to the negative of that change in energy.
但是,我们现在讨论的能量,是电子亲和能,因,此我们可以将电子亲和能,与任何反应联系起来,只要我们将反应写成这种得到电子的形式,我们说电子亲和能就等于,反应前后能量变化的负值。
应用推荐