Hess' Law states that for any chemical reaction, the energy change is path independent.
盖斯定律表明,对于任意化学反应,能量变化并非是路径依赖的。
You just change volume to pressure and basically you're looking at enthalpy under a constant -- anything that's done at a constant volume path with energy, there's the same thing happening under constant pressure path for enthalpy.
可以看到这就是把体积换成了压强,一般我们都是在一种恒定状态下,考虑焓的,任何在恒容条件下,能伴随能量变化的东西,也在恒压条件下伴随焓同样地变化,所以你可以经常。
And the first law says, well heat and work are different forms of energy, and we can add them, and the path dependence of these two things is somehow cancelled in the fact that we have this internal energy.
热力学第一定律说,热和功是能量的不同表现形式,我们可以把它们加起来,它们与路径相关的部分相互抵消,我们就有了内能。
Because I know energy doesn't care about the path.
由于能量不依赖于路径。
The sum of path number 2 and path number 3 get me to the same place, so the energy change by going through this time path, this intermediate point here back all the way to final state should be the same the red path.
而经过路径2和3可以3,到达同样的末态,因此经过路径,2和3带来的能量的变化,与路径1带来的,能量变化相同。
All right, because energy doesn't care about the path.
与路径无关,只决定。
So path number 1 went from i, f let's call this path up here. went to f, and this is how much energy change there was.
从i出发,经过路径1到达,能量的变化是这么多。
应用推荐