• So, one difference between photoelectron spectroscopy and, for example, the photoelectric effect is that in this case, we're not just looking at one energy level, which is what we were looking at from the surface of a metal, now we're talking about this gaseous atom.

    光电子能谱与光电效应的不同点在于,以这种情况为例,我们不只关心一个能级,就像原来在金属表面那样,现在我们研究的是气体原子,所以,我们可以从原子中。

    麻省理工公开课 - 化学原理课程节选

  • So we see that we do not eject electrons in the case of the laser pointer, even if we have this intensity, it is still not related to the energy of an individual photon, so we won't see an effect.

    所以我们看到我们用激光笔,还是没有逐出电子,即使我们有这样的强度,它仍然与一个单个的光子能量无关,所以我们不会看到光电效应。

    麻省理工公开课 - 化学原理课程节选

  • But actually there is a little bit of an energy cost into doubling up into a single orbital, because, of course, it takes energy when you create more electron repulsion, that's not something we want to do, but we have to do it here, and it turns out that that effect predominates over, again, the energy that we gain by increasing the atomic number by one.

    但实际上,在一个轨道上放两个电子,确实会亏损一点能量,因为,当你加入更多电子,引起更大的排斥能,这显然会消耗能量,这不是我们想要做的,但是在这种情况下我们不得不做,结果这一影响,超过了增加一个,原子序数所得到的能量。

    麻省理工公开课 - 化学原理课程节选

  • So this means we now have a new way of thinking about the photoelectric effect, and that nu is the idea that h times nu is actually an energy.

    这意味着我们有一种,新方法来考虑光电效应,这个概念就是h乘以。

    麻省理工公开课 - 化学原理课程节选

  • So you know that x-rays are higher frequency than UV light, for example, that means it's also higher energy than UV light, and if you think back to our photoelectric effect experiments, do you remember what type of light we were usually using for those? Does anyone remember?

    你们知道,X,射线的频率比紫外光高,这意味着,它的能量也比紫外光要高,那么,请大家回想一下我们的光电效应实验,大家还记得当时我们用的是什么光源吗?,有人记得吗?

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定