And even though he could figure out that this wasn't possible, he still used this as a starting point, and what he did know was that these energy levels that were within hydrogen atom were quantized.
这是不可能的了,但他还是以此为出发点,他知道,氢原子的这些能级,是量子化的,而且他也知道,我们上节课所看到现象。
So, what he did was kind of impose a quantum mechanical model, not a full one, just the idea that those energy levels were quantized on to the classical picture of an atom that has a discreet orbit.
还不是完整的,只是这些能级,是量子化的概念,作用到原子有分立轨道的经典原子模型上,当他做了一些计算后,他得到有个半径,他算出来。
So as I tried to say on the board, we can have n equals 1, 1/2 but since we can't have n equals 1/2, we actually can't have a binding energy that's anywhere in between these levels that are indicated here. And that's a really important point for something that comes out of solving the Schrodinger equation is this quantization of energy levels.
我在这要说的是,我们可以让n等于,但不能让n等于,我们不能得到在这些标出来的,能级之间的结合能,能级的量子化,是从解薛定谔方程中,得到的很重要的一点。
应用推荐