So, essentially we're just breaking it up into two parts that can be separated, and the part that is only dealing with the radius, so it's only a function of the radius of the electron from the nucleus.
所以本质上我们把它写成,两个可分离的部分,这部分,只与半径有关,它仅仅是,电子,到核子距离的函数。
We can use the Coulomb force law to explain this where we can describe the force as a function of r.
我们用库伦定律解释它,力作为距离r的函数,让我们考虑一下。
So, we can use Coulomb's force law to think and it does that, it tells us the force is a function of that distance. But what it does not tell us, which if we're trying to describe an atom we really want to know, is what happens to the distance as time passes?
来考虑这两个粒子之间的,它告诉我们力随距离的函数关系,但它不能告诉我们,而我们如果要描述,原子又非常想知道的是,距离随时间的变化时怎样的?
So again, if we think of a graph of the wave function, we had the wave function is at its highest amplitude when it's lined up with the nucleus, and then as we got further away from the nucleus, the amplitude of the wave function ends up tapering off until it never hits zero exactly, but it goes down very low.
同样,如果我们想象一幅波函数的图,波函数在原子核的位置上,有着最高的振幅,随着与原子核距离变远,波函数振幅逐渐变小直到,它永远不会到零,但它会变得很小。
应用推荐