If we have a higher z effective, it's pulled in tighter, we have to put in more energy in order to eject an electron, so it turns out that that's why case 2 is actually the lowest energy that we need to put in.
而如果有效核电量更高,原子核的束缚也就更紧,我们不得不输入更多的能量来打出一个电子,这就是第二种情况,所需要输入的,能量更少的原因。
The reason it's aluminum is because aluminum has a lower z effective, so it's not being pulled in as tightly by the nucleus, and if it's not being pulled in as tightly, you're going to have to put in less energy in order to ionize it, so that's why it's actually going to have the smaller ionization energy.
原因是,铝的有效核电量更少,所以没有被原子核束缚得更紧,而如果没有被束缚得更紧,你为了电离它所需要注入的能量也就更少,这就是,它的电离能会更低的原因。
It makes a lot of sense when we look at it energetically, because if we think about a 1 s core electron, that's going to be held really, really tightly to the nucleus.
从能量的观点来看这是非常合理的,因为如果我们考虑一下,1,s,芯电子,它会被原子核束缚得非常非常紧。
Core electrons are all those electrons held in really tight with the nucleus in the inner shells, whereas the valence electrons are only those electrons that are in the outer-most shell, or at your highest value of n of the principal quantum number.
芯电子是那些,在内壳层被原子核束缚得非常紧的电子,而价电子只包括,最外层的电子,或者说主量子数,n,的值最大的那些电子。
应用推荐