So this unique temperature and unique pressure defines a triple point everywhere, and that's a great reference point.
这样,无论在何处,三相点都具有相同的温度和压强,十分适合来作参考点。
It sounds pretty silly, but it's really important because it allows you to define a thermometer and temperature.
这听起来相当白痴,但是它确实很重要,因为它让你可以定义,温度计和温度。
Well, if you get the combustion chamber hot enough, in point of fact, there are some reactions between nitrogen and the oxygen.
如果燃烧室的温度足够高的话,实际上在氮气和氧气之间,会发生一些反应。
So temperature in Fahrenheit maybe with a space, just to get the aesthetics to look a little interesting.
华氏温度可能用一个间隔来,使其更加美观和有趣。
Virtue is to be fought for and raced for, not without dust and heat.
美德是要竞争和奋斗的,没有痕迹和温度。
On the other hand, temperature, volume and pressure are variables that are much easier in the lab to keep constant.
另一方面,温度,体积和压强,在实验室中比较容易保持恒定。
We could just collect a bunch of data. For a material .What's the volume it occupies at some pressure and temperature?
对一种物质我们可以得到一系列测量数据,在给定的温度和气压下,它的体积是什么?
OK, now what we'd like to do is be able to calculate any of these quantities in terms of temperature, pressure, volume properties.
现在我们想要做的是能够利用,温度,压强和体积的性质,计算上面的物理量。
Now, we saw before, or really I should say we accepted before, that for an ideal gas, u was a function of temperature only.
我们已经看到,或者说我们已经接受这样一个事实,即理想气体的内能只和温度有关。
You need a functional form that connects the value at one state of matter, the freezing point of water to another phase change, the boiling point of water.
你需要一个函数形式来,连接物质某个态对应的温度值,如水的冰点,和另一个相变,如水的沸点。
And you already saw last time there was this relationship between the temperature and volume changes along an adiabatic path.
是条绝热路径,而上次你已经看到,沿着绝热路径温度和体积,的变化有这个关系。
Whereas under these conditions, these quantities, if you look at free energy change, for example at constant temperature and pressure, H you can still calculate H.
但是,在这些条件下,这些物理量,如果我们考察自由能的变化,例如在恒定的温度和压强下,我们仍然可以计算。
For instance, the pressure and the temperature, or the volume and the pressure.
比如压强和温度,或体积和压强。
It's a state function, so we're at constant temperature and pressure, and now we want to consider some chemical change or a phase transition or you name it.
这就是态函数,我们处于恒定的温度和压强之下,然后考虑某些化学变化或者相变,或者你想考虑的东西。
And so, again, we see a temperature increase, and we know the work, and the temperature increase, it's a constant pressure thing.
好,我们看到温度升高了,然后我们有做功量和温度的升高量,这是一个恒定压力下的值。
All right, next time we're going to talk about a much better scale, which is the ideal gas thermometer and how we get to the Kelvin scale.
好,下次我们,会讲一种好得多的温标,关于理想气体温度计,和开氏温标的导出。
And you can find these compressibility factors in tables. If you want to know the compressibility factors for water, for steam, at a certain pressure and temperature, you go to a table and you find it.
各种气体的压缩系数,想知道水或者水蒸气,在某个温度和压强下的,压缩系数,查表就行了,这是实际气体状态方程的。
All right, so now we have the makings of a good thermometer and a good temperature scale.
这一常数只决定于温度,于是我们现在,可以定义一个理想的温度计和温标了。
Because so much of what we do in chemistry does take place with constant temperature and pressure.
因为化学中我们所做的很多东西,都是在恒定的温度和压强下进行的。
Heat capacity relates the amount of heat that you add to the system to the change in temperature, and this is the relationship.
热容联系起给系统提供的,热量和温度的变化,关系式是这样的:
There's our condition for equilibrium at constant temperature and pressure.
这就是我们在,恒定温度和压强下的平衡条件。
Avogadro was a professor of chemistry at the University of Turin who did a lot of work on gas laws, understanding the number of gas particles in a given volume at a given temperature.
阿伏加德罗是一个化学教授,在都灵大学,他做了很多关于气体定律的研究,了解气体微粒,在特定的容量和温度下的数目。
OK, you use the ideal gas law, etc., then you get a relationship that connects the pressure and the temperature, like here we got a relationship that connected the temperatures and the volumes together.
我们会得到,一个联系初末态,的压强和温度的,关系式,就像这个联系过程中。
This is going to be the connect, what connects the pressures and the temperature.
这就是联系初末,态压强和温度的关系式。
SdT This has minus T dS minus S dT, but the dT part is zero because we're at constant temperature.
这一项包含负的Tds和,但是dT的部分等于零,因为温度为常数。
Similarly for G as a function of temperature and pressure, I can go through the same procedure.
同样的G作为,温度和压强的函数,我可以采用相同的步骤。
And where does that happen, At what temperature and pressure and so forth.
在什么温度,和压强下。
If I'm working under conditions of constant temperature and volume, that's very useful.
如果在恒定的温度和体积下,进行一个过程,这是非常方便的。
Eventually we want the same relationship in the pressure and volume.
我们需要的是,压强和温度间的关系。
It relates the pressure, volume, and temperature together.
它把压强,体积,和温度联系在一起。
应用推荐