• We can graph out what this is where we're graphing the radial probability density as a function of the radius.

    我们可以,画出它来,这是径向概率密度,作为半径的一个函数图。

    麻省理工公开课 - 化学原理课程节选

  • So, let's go ahead and think about drawing what that would look like in terms of the radial probability distribution.

    让我们来想一想如果把它的,径向概率分布画出来是怎么样的。

    麻省理工公开课 - 化学原理课程节选

  • This is the radial probability distribution formula for an s orbital, which is, of course, dealing with something that's spherically symmetrical.

    这个s轨道的,径向概率分布公式,它对于球对称,的情形成立。

    麻省理工公开课 - 化学原理课程节选

  • And in terms of radial nodes, we have 2 minus 1 minus 0, so what we have is one radial node.

    对于径向节点,我们有2减去1减去0,所以有一个径向节点。

    麻省理工公开课 - 化学原理课程节选

  • We will always have r equals zero in these radial probability distribution graphs, and we can think about why that is.

    在这些径向概率分布图里,总有r等于0处,我们可以考虑为什么会这样。

    麻省理工公开课 - 化学原理课程节选

  • We can talk about the wave function squared, the probability density, or we can talk about the radial probability distribution.

    我们可以讨论它,波函数的平方,概率密度,或者可以考虑它的径向概率分布。

    麻省理工公开课 - 化学原理课程节选

  • So here we have 3 minus l equals 0, because it's an s orbital, minus 1, so we have two radial nodes here.

    这里我们有3减去l等于0,因为这是s轨道,减去1,我们有两个径向节点。

    麻省理工公开课 - 化学原理课程节选

  • So I mentioned you should be able to identify both how many nodes you have and what a graph might look like of different radial probability distributions.

    我说过你们要能够辨认,不同的径向概率分布有多少个节点,以及它的图画出来,大概是什么样的。

    麻省理工公开课 - 化学原理课程节选

  • But still, when we're talking about the radial probability distribution, what we actually want to think about is what's the probability of finding the electron in that shell?

    但当我们讲到径向概率分布时,我们想做的是考虑,在某一个壳层里,找到电子的概率,就把它想成是蛋壳?

    麻省理工公开课 - 化学原理课程节选

  • It's somewhat different when we're talking about the p or the d orbitals, and we won't go into the equation there, but this will give you an idea of what we're really talking about with this radial probability distribution.

    当我们讨论p轨道或者,d轨道的时候会有些不同,我们那时不会给出方程,但它会给你们一个,关于径向概率,分布的概念。

    麻省理工公开课 - 化学原理课程节选

  • Similarly, if we were to look at the radial probability distributions, what we would find is that there's an identical nodal structure.

    相似地如果我们看看,径向概率分布,我们会发现有一个完全相同的波节结构。

    麻省理工公开课 - 化学原理课程节选

  • And we talked about the equation you can use for radial nodes last time, and that's just n minus 1 minus l.

    我们讲过这个用于,计算径向节点的方程,也就是n减去l减去1

    麻省理工公开课 - 化学原理课程节选

  • Or we could just look at the radial probability distribution itself and see how many nodes there are.

    或者我们可以直接,看径向概率分布图,本身看看里面有几个节点。

    麻省理工公开课 - 化学原理课程节选

  • so, remember we can break up the total wave function into the radial part and the angular part.

    记住我们可以把整体波函数,分解成径向部分和角向部分。

    麻省理工公开课 - 化学原理课程节选

  • And so, the radial probability density at the nucleus is going to be zero, even though we know the probability density at the nucleus is very high, that's actually where is the highest.

    所以径向概率密度,在核子处等于零,虽然我们知道在,核子处概率密度很大,实际上在这里是最大的,这是因为。

    麻省理工公开课 - 化学原理课程节选

  • Yup, so one total node, 2 minus 1 is 1, and that means since l is equal to 1, we have one angular nodes, and that leaves us with how many radial nodes?

    一个节点,2减去1等于1,因为l等于1,我们有一个角向节点,那剩下径向节点有多少个呢?

    麻省理工公开课 - 化学原理课程节选

  • So, let's actually compare the radial probability distribution of p orbitals to what we've already looked at, which are s orbitals, and we'll find that we can get some information out of comparing these graphs.

    让我们来比较一下p轨道,和我们看过的,s轨道的径向概率分布,我们发现我们可以通过,比较这些图得到一些信息。

    麻省理工公开课 - 化学原理课程节选

  • So, we can look at other radial probability distributions of other wave functions that we talked about.

    我们可以来看一看我们讨论过的,其它一些波函数的径向概率分布。

    麻省理工公开课 - 化学原理课程节选

  • So, I'm asking very specifically about radial nodes here, how many radial nodes does a hydrogen atom 3 d orbital have?

    我问的是径向节点,这里3d轨道的径向节点有多少个?

    麻省理工公开课 - 化学原理课程节选

  • So if we draw the 2 p orbital, what we just figured out was there should be zero radial nodes, so that's what we see here.

    如果我们画一个2p轨道,我们刚才知道了是没有径向节点的,我们在这可以看到。

    麻省理工公开课 - 化学原理课程节选

  • OK. So let's actually go to a clicker question now on radial probability distributions.

    好,让我们来做一个关于,径向概率分布的题目。

    麻省理工公开课 - 化学原理课程节选

  • So, what you find with the s orbital, and this is general for all s orbitals is that all of your nodes end up being radial nodes.

    对于s轨道,你们会发现,所有的节点都是径向节点。

    麻省理工公开课 - 化学原理课程节选

  • So you can see there's this radial part here, and you have the angular part, you can combine the two parts to get the total wave function.

    你们可以看到,这是径向部分,这是角向部分,把这两部分结合到一起,就是总的波函数。

    麻省理工公开课 - 化学原理课程节选

  • But there's also some differences that we need to keep in mind, and that will be the focus of a lot of the lecture today.

    我们也有一个径向节点,但是这里也有一些区别,是我们需要记住的,那是今天报告的焦点。

    麻省理工公开课 - 化学原理课程节选

  • So we talked about radial nodes when we're doing these radial probability density diagrams here.

    我们画这些径向概率分布图的时候,讨论过径向节点。

    麻省理工公开课 - 化学原理课程节选

  • So what we're graphing here is the radius as a function of radial probability.

    我们要画的是径向概率,作为半径的函数分布。

    麻省理工公开课 - 化学原理课程节选

  • And in doing that, we'll also talk about the shapes of h atom wave functions, specifically the shapes of orbitals, and then radial probability distribution, which will make sense when we get to it.

    为了这样做,我们要讲一讲,氢原子,波函数的形状,特别是轨道的形状,然后要讲到径向概率分布,当我们讲到它时,你们更能理解。

    麻省理工公开课 - 化学原理课程节选

  • So, you remember from last time radial nodes are values of r at which the wave function and wave function squared are zero, so the difference is now we're just talking about the angular part of the wave function.

    你们记得上次说径向节点在,波函数和波函数的平方,等于零的r的处,现在的区别是我们讨论的是,角向波函数。

    麻省理工公开课 - 化学原理课程节选

  • We'll start with talking about the shape, just like we did with the s orbitals, and then move on to those radial probability distributions and compare the radial probability at different radius for p orbital versus an s orbital.

    想我们对待s轨道那样,我们先讨论p轨道的形状,然后是径向概率密度分布,并且把s轨道和p轨道在,不同半径处的径向概率做一个比较。

    麻省理工公开课 - 化学原理课程节选

  • We'd started on Monday talking about radial probability distributions for the s orbitals.

    我们从星期一开始讨论了,s轨道的径向概率分布。

    麻省理工公开课 - 化学原理课程节选

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定