And in this case, the tie-breaker goes to the molecule in which the negative charge is on the most electronegative atom.
而在这种情况下,我们需要进行“附加赛“,也就是看看分子中带有负的,形式电荷的原子是不是电负性最高的。
So, if we compare the sulfur to the oxygen, the oxygen it turns out is more electronegative and that is what holds the negative charge in this molecule.
因此,如果我们来比一下硫和氧,氧应该有更高的电负性,而在这个分子中它确实有负的电荷。
if we have a very electronegative atom within a certain molecule, what you'll actually find is that it does affect how the molecule is going to take place or take part in different chemical or biological reactions.
如果在某个分子中有一个电负性很高的原子,你会发现它确实会影响到,这个分子所起的作用,在不同的化学反应或者生物反应中时。
But you need to be able to predict what kind of properties a certain atom's going to have within a molecule, whether you're talking about something, for example, that's very electronegative, or something that is not electronegative at all, it is going to make a difference in terms of thinking about how molecules are structured and also how they interact with other molecules.
但是你需要能够预言,什么性质,某个原子在分子中能够具有,无论你讨论的是哪一种情况,比如,它有很高的电负性,还是它根本没有电负性,都将会产生影响,对这个分子的结构,以及与其它分子相互作用的情况。
应用推荐