As we go down a column, what happens is that the ionization energy decreases.
当我们沿着列向下走的时候,会发现电离能是在降低的。
That is to say the ionization energy of the second most electron.
这是二级电离能,这就是说,电子数第二多的电离能。
So if we want to solve for ionization energy, we can just rearrange this equation.
因此,要想解出电离能,我们只需要将这个方程中的项变换一下位置。
So, if we look on the periodic table, comparing, for example, s to o, if we have s it's below o, what happens to ionization energy as we go down a table?
那么,如果我们看周期表上,比较,比如,硫和氧,硫在氧下面,当我们沿着表向下看的时候,电离能是怎么变化的?
So, we keep the atoms with the lowest ionization energy in the center.
因此,我们把电离能,最低的原子放在中间。
So, this is first ionization energy, let's think about second ionization energy.
那么,这就是第一电离能,下面让我们来想一想第二电离能。
Whenever you hear the term ionization energy, make sure you keep in mind that unless we say otherwise, we're talking about that first ionization energy.
但无论什么时候你听到电离能这个词,一定要记得,除非特别说明,我们都是在说第一电离能。
One major difference between electron affinity and ionization energy is that when we talked about ionization energy, remember ionization energy always has to be positive.
电子亲和能,与电离能之间最大的不同就在于,当我们提到电离能的时候,记得电离能总是正的。
So, second ionization energy simply means you've already taken one electron out, now how much energy does it take for you to take a second electron out.
第二电离能简单地说就是,在你已经拿走一个电子以后,再拿走第二个电子,所需要消耗的能量。
We would expect the ionization energy to decrease, that means that sulfur has our lowest ionization energy.
我们预期电离能会降低,这就意味着硫的电离能最低。
So, oftentimes you'll just be asked about ionization energy.
经常你们会被问到关于电离能。
So, we can now calculate the ionization energy here.
我们可以计算这的电离能。
What we've learned so far is as a first approximation, what we want to do is put the atom with the lowest ionization energy in the middle here.
我们之前所学的可以作为第一近似,我们要做的是把电离能,最低的原子放在中间。
So it's going to keep in mind the limitations, so let's start off with talking about ionization energy.
那么让我们将这些局限性记在心里,继续来讨论一下电离能。
So, in terms of ionization energy, we would expect to see sulfur in the middle.
因此,按照电离能,我们应该把硫放在中间。
So, if we just rearrange this equation, what we find is that z effective is equal to n squared times the ionization energy, IE all over the Rydberg constant and the square root of this.
我们可以发现有效的z等于n的平凡,乘以电离能除以里德堡常数,这些所有再开方,所以等于n乘以,除以RH整体的平方根。
But, in fact, we can also talk about the ionization energy of different states of the hydrogen atom or of any atom.
但实际上我们也可以讨论氢原子,或者其它任何原子的其它能级的电离能。
If something has a high ionization energy, it means that it really, really, really does not want to give up an electron.
如果某个东西有很高的电离能,这意味着它非常非常,非常不愿意失去一个电子。
So, thinking about ionization energy, which atom would you put in the middle here?
那么,从电离能的角度考虑,大家会把哪个原子放在中间?
So we should be able to calculate a z effective for any atom that we want to talk about, as long as we know what that ionization energy is.
我们应该可以计算出任何一个,我们想要谈论的原子的有效电荷量,只要我们知道电离能是多少。
We will never have a case where ionization energy is negative.
我们绝不会见到一个,电离能是负值的情况。
We'll then take a turn to talking about the periodic table, we'll look at a bunch of periodic trends, including ionization energy, electron affinity, electronegativity and atomic radius.
然后我们再开始讲元素周期表,我们会看到很多周期性规律,比如电离能,电子亲和能,电负性以及原子半径。
Now this is a good place to start, because we are very familiar with ionization energy, we've been talking about it it's that minimum energy required to remove an electron from an atom.
现在这是一个开始下面内容的好地方,因为我们已经很熟悉电离能了,我们从很久以前就一直在讨论,它是从一个原子中,拿走一个电子所需要消耗的最低能量。
We talked about ionization energy, electron affinity, we talked about electronegativity, which is just kind of a combination of the first two, and then ended with atomic radius here.
我们讲了电离能的,电子亲和能的,还讲了电负性的,也就是前两个的组合,最后讲了原子半径的。
And we can calculate the ionization energy.
我们能够计算电离能。
We know that binding energy is always negative, ionization energy is always positive.
我们知道结合能,总是负的,电离能总是正的。
So, what we call this is the third ionization energy, or the negative of the binding energy, again of the 2 s orbital, but now it's in boron plus 2 to we're starting with.
那么我们称它为第三电离能,或者负的束缚能,还是,2,s,轨道的,但现在我们是从正二价硼离子开始的。
Let's take a look at the lowest ionization energy in the center case.
让我们来看一下电离能最低在中间的情况。
And we know what that's equal to, this is something we've been over and over, ionization energy is simply equal to the negative of the binding energy.
而且你知道它等于什么,这是我们说过一遍又一遍的,电离能就等于,负的束缚能。
And we know what that's equal to, this is something we've been over and over, ionization energy is simply equal to the negative of the binding energy.
而且你知道它等于什么,这是我们说过一遍又一遍的,电离能就等于,负的束缚能。
应用推荐