This paper presents an adaptive congestion control model in ATM networks at the user to network interface by using a diagonal recurrent neural network (DRNN) as an predictor.
提出一种在用户-网络接口处利用对角递归神经网络(DRNN)作为自适应预测器,实现AT M网络自适应拥塞控制的模型。
Diagonal recurrent neural network (DRNN) is a modified model of the fully connected recurrent neural network with the advantage in capturing the dynamic behavior of a system.
对角循环神经网络是一类经过修正的全连接循环神经网络,在系统动态行为的俘获方面具有明显的优势。
A new type of adaptive PID controller using diagonal recurrent neural network (DRNN) is presented. An on-line learning algorithm based on PID parameter self-tuning method is given.
提出了一种基于对角回归神经网络的PID控制器结构,给出了PID参数在线自整定的学习控制算法。
Diagonal recurrent neural network (DRNN) is a non-unity feedback network.
对角神经网络(DRNN)为非全反馈式动态神经网络。
Diagonal recurrent neural network (DRNN) is a non-unity feedback network.
对角神经网络(DRNN)为非全反馈式动态神经网络。
应用推荐