• Then, the key technique in CBIR is introduced.

    然后介绍了基于内容图像检索关键技术

    youdao

  • Finally the direction of future development in CBIR has been discussed.

    最后图像检索技术发展趋势进行了探讨。

    youdao

  • The extraction of semantic region is significant for the computer vision and CBIR.

    图像中语义区域提取对于计算机视觉CBIR等都具有重要的意义。

    youdao

  • Relevence feedback is used for CBIR in order to embed user model into image search.

    为了用户模型嵌入图像检索系统,基于内容的图像检索领域引入了相关反馈机制。

    youdao

  • In the CBIR system, extraction feature and similarity matching become very important.

    CBIR系统中,图像的特征提取相似度匹配非常重要

    youdao

  • How to describe image characters efficiently and accurately is a core problem in CBIR.

    如何有效准确表达图像特征基于内容的图像检索技术的核心问题

    youdao

  • In recent years, the content-based image retrieval (CBIR) system is a hot research topic.

    近年来,基于内容的图像检索系统(CBIR)一个热门研究话题。

    youdao

  • The last part proved effectiveness of CBIR system based on relevance feedback technology through an experiment.

    第五部分通过对实验结果分析和总结,证明引入相关反馈机制CBIR系统性能的优化和改善。

    youdao

  • Current CBIR systems generally make use of lower-level features like color, texture, shape and space relationship.

    传统图像特征提取方法基本上是围绕图像的颜色纹理形状空间关系来展开的。

    youdao

  • To access these image databases automatically and on demand requires the system of content-based image retrieval (CBIR).

    实现基于内容图象检索系统关键问题是实现图象的语义分割。

    youdao

  • The color spatial distribution density can provide the color spatial distribution information for CBIR(Content Based Image Retrieval).

    基于内容图像检索中颜色空间分布密度提供颜色空间的分布信息

    youdao

  • In this article, based on the introduction of framework of CBIR with relevance feedback, a real image retrieval system was constructed.

    本文详细介绍了基于相关性反馈技术图像检索系统框架

    youdao

  • The principal research of content based image retrieve (CBIR) includes two aspects: visual feature representation and similarity measurement.

    基于内容图像检索(CBIR)技术的研究主要包括两个方面可视化特征提取相似性度量

    youdao

  • CBIR is an image retrieval technology, which synthesizes various visual features in digital image, such as color, textual, and shapes features.

    基于内容的图像检索一种利用图像颜色纹理形状视觉特征进行图像检索技术

    youdao

  • The methods of CBIR retrieve the images using the characteristics of themselves, such as color, shape, texture and the space position relations.

    基于内容图像检索技术可以克服这些弊端,它在商标检索领域得到非常广泛应用

    youdao

  • By using a sorting assessment method, this paper assesses and compares the algorithms, the CBIR system proves to run well with a large image library.

    通过系统,借助排序评价方法本文的基于纹理特征的图象检索算法进行了评价。

    youdao

  • In this paper, the methods for CBIR is based on color co-occurrence matrix-a new conception which proposed on the basis of grey level co-occurrence matrix.

    介绍了一基于色彩共生矩阵提取颜色-纹理特征图像检索方法

    youdao

  • One of the key technologies in CBIR system is the image semantic segmentation. This paper surveys the techniques for image semantic segmentation and class…

    该文分六类对现有的图象语义分割技术进行了全面总结,进一步研究基于内容的图象检索技术奠定了基础。

    youdao

  • However, due to the complexity of the information, the lack of standard for the description of image content induces low interoperability among CBIR systems.

    然而由于信息复杂多样,图像内容描述方法缺乏规范导致了基于内容的图像检索系统中存在通用性差的问题。

    youdao

  • According to that, the paper expatiates on key technologies used in CBIR researches, such as feature extracting, similarity measuring, and relevance feedback, etc.

    面对这种研究现状,本文详细分析了基于内容的图像检索的各种特征提取方法相似性度量方法以及相关反馈技术等。

    youdao

  • Content based image retrieval (CBIR) has been an active research area, however, the achievements in image representation and similarity measurement are not satisfying.

    基于内容的多媒体信息检索当前世界的研究热点,然而图像内容表示及其相似性度量两个关键问题上取得的进展不能令人满意

    youdao

  • Two effective ways has been proposed to solve the problem : one is content-based image retrieval(CBIR) technique which search target images by low-level content feature.

    基于内容图像检索技术和基于语义图像检索技术正是解决问题有效途径

    youdao

  • At first, we introduce the current research situation of CBIR (Content-based image retrieval) both at home and abroad, basic theories, inquiry ways and application fields.

    首先介绍国内外基于内容图象检索系统研究现状基本原理查询方式以及应用领域

    youdao

  • We do some researches on the algorithm of CBIR, and pay more attention on the global feature (including color, edge and texture feature) extraction and matching algorithms.

    基于内容图象信息检索算法作了研究。重点阐述了对颜色边缘纹理等全局特征提取匹配算法

    youdao

  • Specifically, we make the following contributions:(1) Introduce CBIR technology to product design patents retrieval, establish a new method of product design patents retrieval.

    CBIR技术引入外观设计专利检索中,开创一种全新检索思路;

    youdao

  • Traditional techniques of CBIR try to retrieve images through analyzing the similarity of image visual features, but CBIR cannot meet the requirements of semantic image retrieval.

    传统CBIR技术试图通过分析图像视觉特征相似性检索图像,这不能满足普通人按语义检索图像的需求

    youdao

  • Traditional techniques of CBIR try to retrieve images through analyzing the similarity of image visual features, but CBIR cannot meet the requirements of semantic image retrieval.

    传统CBIR技术试图通过分析图像视觉特征相似性检索图像,这不能满足普通人按语义检索图像的需求

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定