矩阵乘法是有结合律的。
本章末尾的表2-1完整总结了所有运算符的优先级和结合律。
Table 2.1 at the end of this chapter summarizes precedence and associativity for all operators.
这里我们用到了乘法结合律也可以用消去律,本来这些运算律是对正整数乘法适用的,但对于有分数参加的乘法我们也规定适用。
Here we have used the associative law or the cancellation law for multiplication, which are satisfied for natural Numbers, now we assume they are satisfied with fraction Numbers.
我们容易验证乘法满足结合律和交换律,并且由加法结果的唯一性得出乘法结果的唯一性和乘法消去律。
We then can verify the associative law and the commutative law for multiplication, and the uniqueness of the result of addition indicates the uniqueness and the cancellation law for multiplication.
本文给出了两个检验结合律的方法。
This paper offers two methods to verify the associative law.
对基于操作的结合律与分配律进行变换的强时间约束条件下的调度算法提出了改进。
The paper propose some improvements on the scheduling optimization algorithm under strong time constraints which bases on the associativity and distributivity properties of arithmetic operations.
对基于操作的结合律与分配律进行变换的强时间约束条件下的调度算法提出了改进。
The paper propose some improvements on the scheduling optimization algorithm under strong time constraints which bases on the associativity and distributivity properties of arithmetic operations.
应用推荐