讨论了一般符号模式矩阵的幂等性和广义逆。
I discuss idempotent, generalized inverses of general sign pattern matrix.
的符号模式矩阵类定义为符号模式为A的所有实矩阵的集合。
The sign pattern matrix class of a is defined by the set of all real matrixes those sign pattern is a.
符号模式矩阵最早起源于经济学中对某些问题的定性性质的研究。
The sign pattern matrix originated some issues in the economics of the qualitative nature of the study.
符号模式矩阵理论主要研究矩阵的仅与其符号模式有关的定性性质。
The matrix theory of sign patterns mainly studies its qualitative nature of the sign pattern which is only about its elements.
第一章主要是介绍符号模式矩阵的研究历史与相关基本概念,本文结论。
In the chapter 1, the author introduce the history of development and the related knowledge of the sign pattern matrix, and the main results of the paper.
第二章介绍符号模式矩阵的惯量所具有的几类重要形式以及惯量研究的动态。
In chapter two, it includes some impontant forms of sign pattern matrix inertias and research trends of inertia.
符号模式矩阵的研究起源于研究线性系统的符号稳定性与符号可解性,是由P。
The origin of sign pattern matrix is lies in study of sign-stability and sign-solvability of linear system. It was first proposed by p.
第二章通过举例介绍了两种证明符号模式矩阵是谱任意的方法——构造法和幂零-雅可比方法。
In the chapter 2, the author introduce two methods that method a sign pattern matrix is spectrally arbitrary, the structure method and Nilpotent-Jacobi method with examples.
本文基于反对称矩阵的谱集,采用正交相似变换,得到一类具有零对角的符号模式矩阵具有唯一惯量的结论。
Based on the spectral set of skew-symmetric matrix, the result that a class sign pattern matrix with zero diagonal is unique inertia was proved by using orthogonal similarity transformation.
分析了谱任意的相关结论并给出了两类符号模式,然后运用幂零雅可比方法证明了两类符号模式矩阵的谱任意性。
I analyse some conclusions of spectrum arbitrary and give two sign patterns. then I prove two classes sign pattern matrix that are spectrally arbitrary using Nilpotent-Jacobi method.
本文主要研究了符号幂等矩阵和对称符号模式矩阵的性质及它们之间的关系,特别是符号幂等矩阵的负元素的个数。
In this paper, we mainly study the sign idempotent of sign patterns, symmetric sign patterns and their relations, especially the number of negative entries that occur in sign idempotent sign pattern.
一个实方阵a称为是S2NS阵,若所有与A有相同符号模式的矩阵均可逆,且它们的逆矩阵的符号模式都相同。
A square real matrix a is called an S2NS matrix, if every matrix with the same sign pattern as a is invertible, and the inverses of all such matrices have the same sign pattern.
通过幂等的定义,给出了两种符号幂等模式矩阵的结构。
Meanwhile, we give two structures of the sign idempotent by the definition of idempotent.
通过幂等的定义,给出了两种符号幂等模式矩阵的结构。
Meanwhile, we give two structures of the sign idempotent by the definition of idempotent.
应用推荐