本文主要就空间数据挖掘方法和空间数据挖掘存在的问题这两方面进行了研究。
The paper researches two aspects that are methods and problems of spatial data mining.
这样可以充分借鉴经典数据挖掘的方法和思想来实施对空间数据进行挖掘,获得较高的效率和满意的结果。
In this way, we can make use of good methods and ideas in classical data mining to discover spatial knowledge under well-pleasing result.
空间数据挖掘有许多种方法。
空间聚类是空间分析和空间数据挖掘的重要方法和研究内容。
Spatial clustering analysis is important method and study content of spatial analysis and spatial data mining.
空间关联规则是空间数据中重要的隐含信息,本文采用数据挖掘的方法研究空间关联规则信息的提取。
Spatial Association Rules is important information of implying in the data, this paper adopts method research Spatial Association Rules abstraction of message that data excavate.
针对云理论在空间数据挖掘和知识发现中的应用,提出了基于半云和梯形云的空间距离概念的划分方法。
This thesis presents its application in spatial data mining and knowledge discovery, and focuses on the cloud models and their algorithms.
聚类分析是空间数据挖掘的一种方法,聚类算法能从空间数据库中直接发现一些有用的聚类结构。
Cluster analysis is a method of spatial data mining. Clustering algorithm can find some useful clustering structures directly from spatial data base.
聚类分析是空间数据挖掘的一种方法,聚类算法能从空间数据库中直接发现一些有用的聚类结构。
Cluster analysis is a method of spatial data mining. Clustering algorithm can find some useful clustering structures directly from spatial data base.
应用推荐