本文讨论了该下集的极大元及其性质。
The properties of maximal elements of the lower segment are discussed.
在L -凸空间中建立了新的极大元定理。
In this paper, new existence theorems for maximal elements are established in L-convex Spaces.
在第二章中,证明了某些关于较好容许映像的新的极大元存在定理和重合点定理。
Chapter two, proves some new existence theorems of maximal elements and coincidence theorems involving better admissible mappings.
凸空间中的KK M型定理,有上下界的平衡问题,极大元,重合点定理及其应用。
KKM Type Theorems, Equilibrium Problems with Lower and Upper Bounds, Maximal Elements, Coincidence Theorems with their Applications in the G-convex Spaces.
作为应用,一不动点定理,一极大元定理,一重合点定理和一些极小极大不等式被证明。
As applications, a fixed point theorem, a maximal element theorem, a coincidence theorem, some minimax inequalities are proved in FC-space.
作为应用,一不动点定理,一极大元定理,一重合点定理和一些极小极大不等式被证明。
The new result is applied to obtain a KKM type theorem and maximal and minimal element theorems which are equivalent to each other on G-FC-spaces.
作为应用,一不动点定理,一极大元定理,一重合点定理和一些极小极大不等式被证明。
The new result is applied to obtain a KKM type theorem and maximal and minimal element theorems which are equivalent to each other on G-FC-spaces.
应用推荐