在获得的SGOI衬底材料上生长高质量应变硅材料。
本文主要研究应变硅空穴各机制散射几率及空穴迁移率与晶向、应力的理论关系。
The main work is focused on models of hole scattering mechanisms and hole mobility which is related to the crystal orientations and stress of strained Si.
简介了应变硅材料、栅介质的工艺及铜互连的可靠性,并对新的研究方向做了介绍。
The reliability of strain silicon, gate dielectric and copper interconnection are discussed, and some new researches are presented.
首先分析了应变硅形成机理、能带结构变化、空穴态密度有效质量,进而分析了空穴迁移率增强机理。
The formation mechanism, energy band, hole density-of-state effective mass of strained si have been analyzed first., then hole mobility enhancement mechanism is analyzed.
该技术将基于一个具有增强的高- k金属闸(HKMG平面工艺),新型应变硅,低电阻铜超低K互连。
The technology will be based on a planar process with enhanced high-K metal gate (HKMG), novel strained silicon, and low-resistance copper ultra-low-K interconnects.
这款产品将使用Intel第三代HKMG工艺,第五代硅应变技术,另外与32nm类似,22nm制程仍将继续使用193nm液浸式光刻技术。
It will also use copper interconnects, low-k, strain silicon and other features. Like 32-nm, Intel will make use of 193-nm immersion lithography.
“变形”硅是所有最新的处理器的基本组成部分,原因是:晶格里应变诱发的形变提升了处理器的性能。
Strained silicon is a fundamental component of all recent microprocessors. The reason for its success is that local strain-induced deformation in the crystal lattice improves processor performance.
现代先进的外延技术使应变层锗硅材料的应用成为可能。
Modern advanced epitaxial growth technology has made the widely application of SiGe strained layer materials possible.
现代先进的外延技术使应变层锗硅材料的应用成为可能。
Modern advanced epitaxial growth technology has made the widely application of SiGe strained layer materials possible.
应用推荐