根据含复铰平面闭式运动链的基本参数,定义了度谱、构件谱和复铰谱。
The spectrums of degree, structural component and multiple hinges are defined according to the basic parameters of planar closed kinematic chain with multiple hinges.
设B是一个复的向量空间,它是由环链在平环上的简单闭曲线生成。
Let B be a complex vector space generated by some simple closed curves in the annulus.
分析了粉末烧结材料镦粗和复压工艺的致密效果,提出了闭式模锻工艺设计原则。
The densification effects of upsetting and repressing are compared, and a technology design principle for closed die forging is suggested .
本文就非闭光滑曲线上关于第二类边界条件的复三次样条函数的逼近误差进行了论讨,取得了较好的结果。
In this paper, we discussed the approximation errors of complex cubic interpolation spline on open smooth curves under the second boundary condition and got the better results.
数值结果表明,二级离散复镜像方法是一种快速、有效的求解闭式格林函数的方法。
Numerical results show that the two-level DCIM is an efficient method for calculating the closed-form Green's Functions.
使用离散复镜像方法(DCIM)快速得到平面分层介质的空间域的闭式格林函数,避免了费时的索末菲尔德积分。
To avoid calculating the time-consuming Sommerfeld's integrals, the discrete complex image method (DCIM) is employed to obtain spatial domain closed-form Greens function for planar-layered media.
本文把复变函数的围道积分应用于泛函分析,对一般的线性闭算子得到了算子值函数的中值定理。
In this paper, the author USES the contour integral in analytic function to functional analysis, and obtains the mean value theorem of operator-valued functions.
讨论了有限维和无限维复J-辛空间上的拓扑,并证明了复J-辛空间的每一个完全J-Lagrangian子流形都是闭集。
We discuss topologies for complex J-symplectic spaces and prove that each complete J-Lagrangian submanifold of the complex J-symplectic spaces a closed set.
讨论了有限维和无限维复J-辛空间上的拓扑,并证明了复J-辛空间的每一个完全J-Lagrangian子流形都是闭集。
We discuss topologies for complex J-symplectic spaces and prove that each complete J-Lagrangian submanifold of the complex J-symplectic spaces a closed set.
应用推荐