本文研究一类生化系统的极限环的存在性与唯一性;
The existence and uniqueness of limit cycles of a biochemical system is proved.
应用常微分方程定性方法,得到了正平衡点的全局稳定性和非小振幅极限环的存在唯一性的充分条件。
By using the qualitative methods of ODE, the positive equilibrium's global stability and existence and uniqueness of non-small amplitude stable limit cycle were obtained.
本文研究捕食—食饵系统(1)极限环的存在唯一性,得到了文中的定理1、2、3。
In this paper, we studied the existence and uniqueness of limit cycle or the predator-prey system (l), and obtained theorems 1, 2, 3.
对一个自催化反应振动模型作了全局分析,讨论了其极限环的存在与唯一性,给出了其分枝曲面方。
The existence and uniqueness of limit cycles are discussed, and the equation of bifurcation surfaces is obtained.
给出了其极限环存在性、唯一性以及稳定性的证明。
It is not satisfied general condition for existence of a stable limit cycle.
结果得到了此类系统极限环存在且唯一的充分条件。
Conclusion The existence, unique-ness and stability on limit cycles for this system are obtained.
目的研究一类二次微分系统的极限环存在性及唯一性。
Aim To discusses the existence and uniqueness of limit cycles for a class of quadratic system.
几乎所有的学者只针对极限环内含奇点的情况,讨论了极限环的存在性、唯一性、稳定性以及如何产生与消失。
Almost all of scholars only studied the possible appearance or disappearance of a limit cycle surrounding a singular Point.
几乎所有的学者只针对极限环内含奇点的情况,讨论了极限环的存在性、唯一性、稳定性以及如何产生与消失。
Almost all of scholars only studied the possible appearance or disappearance of a limit cycle surrounding a singular Point.
应用推荐