用传统方法得到的伽玛分布参数的置信区间显然不是最短,因而在这个意义上讲也不是最优的。
The confidence interval of parameter of Gama distribution, obtained by using the traditional method, is obviously not the shortest. So it is not the best one in this sense.
当参数限制在某一范围内并服从一致的分布,且多余参数未知时,其贝叶斯置信区间有很高的置信概率。
The Bayesian credible intervals that arise when a parameter is given a uniform distribution over the restricted range and nuisance parameters are unknown have good frequentist coverage probabilities.
这说明在小样本下,研究参数的最短置信区间是必要的。
So it is necessary to research the shortest confidence interval of parameter for small samples.
用UMAU置信区间对参数进行估计,这种方法是通过构造的区间包含“错误值的概率尽可能小”来刻画精度的。
The parameter being estimated by using UMAU confidence interval, this method can describe precision by making an interval, which includes the smaller probability of wrong value.
该方法计算效率较高,能定量给出各参数变化的置信区间,可适用于各种非线性反演的误差分析。
This method results in efficient computation, determines quantitative confidence interval of each parameter range and is applicable to error analysis in various nonlinear inversions.
通过引入可靠度的置信区间和置信度的概念,可以把结构分析中的随机参数转化为置信区间下的区间数。
Using concepts of the confidence interval and degree of confidence, random parameters in an engineering structure can be transferred into the interval Numbers.
寻找一些分布中的参数的具有预先给定宽度和预先给定覆盖概率的置信区间是令人感兴趣的。
Finding confidence intervals with prescribed width and prescribed coverage probability for some parameters in distributions is of great interest.
从置信区间本质意义出发,得到了对数正态总体参数的联合置信域以及置信域的面积公式。
Based on the definition of the confidence interval, we obtained the combination confidence region of the Lognormal population and the area formula of the combination confidence region.
从置信区间本质意义出发,得到了对数正态总体参数的联合置信域以及置信域的面积公式。
Based on the definition of the confidence interval, we obtained the combination confidence region of the Lognormal population and the area formula of the combination confidence region.
应用推荐