Namely, we will be saying the /a normal vector is x, y, z over a, plus or minus depending on whether we want it pointing in or out.
我们容易知道,法向量为,正负号取决于它是指向外面还是里面。
Remember, we don't do a one-to-one correlation, because p x and p y are some linear combination of the m plus 1 and m minus 1 orbital.
记住,我们不需要把它们一一对应,因为px和py轨道是,m等于正负1轨道的线性组合。
So we can have, if we have the final quantum number m equal plus 1 or minus 1, we're dealing with a p x or a p y orbital.
所以如果我们有,磁量子数m等于正负1,我们讨论的就是px或者py轨道。
the general notation for vector dr-- y equals dx, x roof, plus dy, y roof, z plus dz, z roof.
总的向量dr的符号-,=dr向量x+dy向量,+dz向量。
The power of linearity is F=k1+k2 if I come across f of x, y, z equals k1 plus k2, if it is a linear equation, I don't have to go and solve it all over again.
线性的威力是,一个方程,如果它是个线性方程,那么我就不用再去解他了。
Namely, let's say that you have a function maybe of three variables, x, y, z, df = fxdx+fydy +fzdz then you would write df equals f sub x dx plus f sub y dy plus f sub z dz.
即是说,如果你有一个,含自变量,x,y,z的函数,那么。
Similarly, if m is equal to either plus 1 or minus 1, py we would in turn call it the p y orbital, or the p x orbital.
类似的,如果m等于+1或,我们可以叫它,或者px轨道。
For example, the moment of inertia about the z-axis is dV the triple integral of x squared plus y squared density dV.
例如,关于z轴的转动惯量,是∫∫∫δ
For example, the moment of inertia about the z-axis is dV the triple integral of x squared plus y squared density dV.
例如,关于z轴的转动惯量,是∫∫∫δ
应用推荐