Wavelet thresholding technology is using the sparse property of wavelet representation and diagonal filter for signal denoising . This method is nearly optimal in many signal spaces.
小波阈值降噪技术利用小波变换表示信号的稀疏性质,使用对角形式的阈值滤波器达到信号降噪的目的,这个方法在很多信号空间上是近似最优的。
Wavelet provides a compact multi-resolution representation and reconstruction of image, which makes it possible to exploit the property of Human Visual System for image coding.
小波变换提供了一种图像的多分辨率分解重建的表示形式,这种小波分解能够有效的利用人类视觉系统的特性压缩图像。
The directional wavelet theory provides a novel sparse representation method for image processing, and it can capture geometrical image structures more efficiently.
方向性小波理论为图像处理提供了一种新的稀疏表示方法,能够更有效地捕捉图像中的几何结构。
Based on zero crossing representation of wavelet transform of this radial function and matching procedure, a new algorithm to identify orbits of shaft centerline is proposed.
基于此函数的小波变换零交叉表示和匹配过程,得到了识别轴心轨迹的一种新方法。
Wavelet zero crossing representation is investigated. A new and simple method of reconstructing signal from its wavelet zero crossing representation is given.
分析了信号零交叉表示方法,给出了新的由零交叉表示进行原始信号重构的算法。
A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented in this paper.
本文在对小波神经网络及其算法研究的基础上,提出了一种对脑电信号压缩表达和痫样脑电棘波识别的新方法。
TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain.
TEMPLAR采用最小描述长度(mdl)的复杂性正规化学习稀疏表示的小波域模板。
Firstly, a district wavelet transformation is presented to obtain multiple resolution image representation. Image quality parameter is calculated on each level resolution image.
首先对影像进行基于小波变换的多分辨率表达,计算每一级影像质量参数值。
Image coding methods based on wavelet maxima representation are studied.
研究了基于图像子波变换局部极大值描述的压缩编码方法。
The multiresolution image representation based on the wavelet analysis is introduced. By this way, the image resolution can be decreased in keeping with the human visual system characteristic.
本文基于小波分析提出由高分辨率图像可得到各种较低分辨率图像的多分辨方法符合人的视觉系统特性。
The multiresolution image representation based on the wavelet analysis is introduced. By this way, the image resolution can be decreased in keeping with the human visual system characteristic.
本文基于小波分析提出由高分辨率图像可得到各种较低分辨率图像的多分辨方法符合人的视觉系统特性。
应用推荐