This paper gives a review on vector data compression of mobile GIS.
文章针对移动GIS系统中的矢量数据压缩问题进行了总结与综述。
Then, the conventional vector data compression methods are introduced simply.
然后对传统的矢量数据压缩方法作了简单的介绍;
The thesis discusses a method of vector data compression: subsection Douglas algorithm with the goniometry.
本文提出了一种矢量数据压缩方法:角度分段道格拉斯算法。
This paper introduced the method of vector data compression-Douglas-Peucher algorithm into profile data compression and improved the algorithm.
把空间矢量数据的压缩方法道格拉斯-普克法引入到断面数据的抽稀处理中,并对算法进行改进。
The thesis introduces the method of vector data compression-Douglas-Peucker algorithm into profile data compression, and makes the improvement to the algorithm.
把空间矢量数据的压缩方法道格拉斯-普克法引入到断面数据的抽稀处理中,并对算法进行改进。
Vector Quantization is an effective data compression technology.
矢量量化是一种有效的数据压缩技术。
Vector quantization (VQ) is an efficient data compression technique.
矢量量化(VQ)是一种有效的数据压缩技术。
Then a special Vector Quantization, called Wavelet Tree Vector Quantization (WTVQ), is designed to compress the every spectral image data, and a higher compression performance is obtained.
采用特殊矢量量化编码,叫作小波树矢量量化(WTVQ)编码对每个谱象数据进行压缩,获得较高的压缩性能。
This paper presents a new SAR raw data compression algorithm named Normalized Adaptive Predictive Vector Quantization (NAPVQ).
该文提出归一化自适应预测矢量量化(NAPVQ)算法压缩sar原始数据。
Vector Quantization (VQ) is one of popular data compression and data coding methods for speech recognition at present.
矢量量化(VQ)是语音识别中广泛应用的一种数据压缩和编码方法。
This paper presents the importance of source classification to image data compression with vector quantization technique. Also, an image data classifying method is given.
该文指出图像数据分类对矢量量化技术进行图像压缩编码的重要性。
In this article, a new ECG compression method applying 2-step vector quantization (VQ) on DCT coefficients of ECG data was introduced.
本研究提出了一种新的心电信号压缩方法,该方法对心电数据进行离散余弦变换(DCT)并对DCT变换的结果进行二级矢量量化。
Vector quantization (VQ) is an efficient approach of lossy data compression.
矢量量化(VQ)是一种高效的有损压缩技术。
Vector quantization (VQ) is an efficient approach of lossy data compression.
矢量量化(VQ)是一种高效的有损压缩技术。
应用推荐