The definition of work suggests a third process of vector algebra, namely, scalar multiplication of two vectors.
功的定义用到矢量代数的第三种运算,即两个矢量的标积。
This course mainly includes: vector algebra and analytic geometry in space, multivariable calculus and infinite series.
本课程主要内容包括:向量代数与空间解析几何、多元函数微积分、无穷级数等。
The main content: vector algebra, plane and linear space, special surfaces and secondary surfaces, general quadratic surfaces and general quadric surface.
主要内容有:向量代数、空间的平面和直线、特殊曲面和二次曲面、一般二次曲面和一般二次曲面。
The coordinate transformation matrix based on the direction cosine parameters from the object coordinate system to the world coordinate system is derived by vector algebra.
利用矢量代数的方法,推导出以方向余弦为参量的物坐标系到世界坐标系的坐标变换矩阵;利用矩阵求逆的方法,推导出世界坐标系到物坐标系的坐标变换矩阵。
Because fractal dimension can not respond to the orientation of the gray level images, an image orientation Angle estimating method is proposed by basic knowledge of vector algebra.
由于分数维不能反应灰度图像的方向性,本文利用矢量代数的基本知识,提出了一种灰度图像方向角的提取方法。
The first chapter is about vector algebra, introduces the vector of linear operations, inner product of vectors, vector outer product, vector product and double mixed exterior product.
第一章是向量代数,主要介绍向量的线性运算、向量的内积、向量的外积、向量的混合积和双重外积。
Applying the vector representation of formula for definite proportional division point in vector algebra, this paper obtains a new useful method of compunction for segment ratio in volume ratio.
利用向量代数中定比分点公式的向量形式,给出了一种非常简明有用的求容积比中线段比的新方法。
Linear relation of vector group is an important concept in linear algebra and is also an important theoretical foundation of solving problems.
向量组的线性相关性是线性代数中的重要概念,也是解决问题的重要的理论根据。
This paper describes the relationship between the rank of matrix, the rank of vector group and liner equation group in the linear algebra.
讨论了线性代数中矩阵的秩、向量组的秩与线性方程组的秩之间的关系。
The vector is widely applied to algebra, geometry and trigonometry. With it being properly used, many problems can be solved flexibly and easily.
向量知识在代数、几何、三角等数学分支中有着十分广泛的应用,利用向量这一工具可巧妙而简捷地处理多种题型。
Vector has its operational method and system unique to number, and it is closely connected with algebra, geometry and so on.
有自己独特的运算结构和系统,并且与三角函数、平面几何、空间几何、代数等都有密切联系。
The vector is one of the most basic concepts in modern mathematics, it has a "dual status" - "Algebra form" and "geometry form". It is a bridge to link up the contents of geometry.
向量是近代数学最基本的概念之一,它具有代数形式和几何形式的“双重身份”,是沟通几何、代数、三角等内容的桥梁。
An important concept here is that of vectors, generalized to vector Spaces, and studied in linear algebra.
这是抽象代数领域。这里一个重要的概念是,向量,推广到向量空间,以及线性代数研究。
The physically important concept of vectors, generalized to vector Spaces, is studied in linear algebra.
身体重要思想的载体,推广到向量空间,研究了线性代数。
In this paper, we study the scalarization over Euclidean Jordan algebra vector optimization problem.
本文主要研究欧几里德若当代数向量优化的谱标量化。
In this paper, we study the scalarization over Euclidean Jordan algebra vector optimization problem.
本文主要研究欧几里德若当代数向量优化的谱标量化。
应用推荐