Using proper decomposition of the functions and integral transformation, the problem is reduced to a singular integral equation, whose solution is given of the theory of integral equation.
笔者通过适当的函数分解和积分变换,将寻求复应力函数的问题转化为求解一正则型奇异积分方程,并借助积分方程理论给出了方程的求解方法。
Applying the theory of integral equation and functional analysis, we prove the existence and uniqueness of the system solution to the equation, and get the analytical expression of the solution.
运用泛函分析和积分方程理论,证明了系统解的存在性与唯一性,得到系统解的解析表达式。
Some simple application of method of integrating factor that solve ordinary differential equation is discussed on the limit theory, differential and integral.
讨论了解常微分方程的积分因子法在极限理论、微分学、积分学中的一些应用。
By the singular integral equation theory we obtain the resolvable sufficient and necessary condition and the formula of counting index for the problem.
同时利用带位的奇异积分方程理论得到了这一问题可解的主要条件及指数计算公式。
A brief review by the progress of advanced statistical mechanics, integral equation and perturbation theory for electrolyte and non-electrolyte solutions in recent years is presented.
用近代统计力学研究成果——积分方程理论和微扰理论简要评述了电解质和非电解质溶液的国内外研究进展。
By choosing suitable boundary normalized equation in according to R-function theory, the irregularity of integral kernel in integral equation can be eliminated.
得到的积分方程中的积分核具有奇异性,再根据R -函数理论,可以选择适当的边界规范化方程,消除核的奇异性。
The differential and integral equation for survival probability and a upper bound of ruin probability are given by using renewal theory and stochastic process approach.
利用更新理论和随机过程等方法,给出了模型生存概率所满足的微积分方程关系式和破产概率的一个上界估计。
The differential and integral equation for survival probability and a upper bound of ruin probability are given by using renewal theory and stochastic process approach.
利用更新理论和随机过程等方法,给出了模型生存概率所满足的微积分方程关系式和破产概率的一个上界估计。
应用推荐