The examples presented in this paper have proved that the spline functions with parameter of non uniform path distance is a practical...
文中所附算例表明非均匀自然路径距离参数的三次样条函数的曲线表示是有效可行的。
The numerical results show that higher spline weight functions in the local boundary integral equation method have excellent properties.
算例表明,高阶样条权函数在局部边界积分方程方法中有好的收敛性、稳定性和精度。
The advantage of the proposed spline functions is easy splitting of given curves according to the curve path distance.
这种插值曲线的优点是容易按距离对插值后的曲线作任意分割。
In general, spline interpolation functions don't fit the need of monotony property.
在实际问题中,一般的样条插值函数不满足单调递增性质。
Shanghai Composite Index is an important index for Chinese stock market, and we apply the Least Squares Method with roughness penalty to smooth its historical data, using spline functions.
上证综合指数是股票市场的一个重要指标,我们采用样条函数,将带光滑参数的最小二乘法应用于拟合该指标的历年数据。
This algorithm makes good use of the B-Spline functions well performance in edge estimation and wavelets multi-scales character. The experimental results are satisfactory.
该算法充分的利用了B -样条函数在边缘拟合上的优势以及小波方法的多尺度优势,算法的处理结果令人满意。
With the cubic B spline functions treated as displacement functions, a new method is introduced into. The result is compared with one of the finite element method.
应用样条有限点法,以三次B 样条函数为位移试函数,导出了拱结构非线性内力分析的新方法。
The common weight functions are: Gaussian, exponential, spline, and compactly supported radial basis function (CSRBF) and so on.
目前常见的权函数有:高斯型、指数型、样条型以及径向基函数等。
The method based on the cubic B-spline function, beam vibration function (or trigonometric functions) and variation principle.
这个方法是建立在三次样条函数、梁振动函数(或三角函数)及变分原理基础上。
In this paper, We discuss a local-support basis for the space of L-spline functions, and give correct proof for the local-support basis theorem.
本文讨论L -样条函数空间的局部支集基问题,给出了局部支集基定理的正确证明。
Original spline collocation methods collocate at the nodes by cubic spline functions, but the precision isn't good.
最初样条配置法是利用三次样条函数并在自然节点上进行配置,但精度不够高。
The general B-spline functions and the steps of operating are introduced firstly, then as an example.
文中首先介绍了任意次B -样条基的建立方法,并给出了一般的实施步骤;
Using natural spline functions with multiple knots, we discuss the extended Sard approximation of Linear functional.
利用自然水平函数,将众所周知的阻尼牛顿法进行推广,用于求解病态非线性方程组。
Using natural spline functions with multiple knots, we discuss the extended Sard approximation of Linear functional.
利用自然水平函数,将众所周知的阻尼牛顿法进行推广,用于求解病态非线性方程组。
应用推荐