In this paper, we give the conditions of existence of positive almost periodic type solutions for some nonlinear delay integral equations.
本文利用不动点理论,给出了一类非线性延迟积分方程正的概周期型解的存在性条件。
This paper deals with the problems on the existence and uniqueness of bounded solutions and almost periodic solution for third order nonlinear differential equations with time lag.
研究具时滞的三阶非线性微分方程,利用变量替换和不动点方法,得到了此方程有界解和概周期解的存在性及唯一性结果。
By the first integral method, the existence, uniqueness and nonexistence of solutions for some nonlinear ordinary differential equations with singular boundary condition are discussed.
用首次积分法,讨论了带奇异边界条件的非线性常微分方程解的存在性、不存在性和唯一性。
This paper is concerned with oscillation of solutions of a class of nonlinear partial difference equations. Some sufficient conditions of oscillation for the equations have been obtained.
本文讨论了一类半线性偏差分方程解的振动性,得到了这类方程解的振动性的一些充分条件。
Under appropriate conditions, the approximate solutions for two nonlinear wave equations are obtained simply and conveniently.
在适当的条件下,较简捷地得出了这两类非线性波方程的近似解。
The existence theorem of a class of periodic boundary value problems for first order nonlinear integrodifferential equations is obtained through the method of lower and upper solutions.
研究了一类纯量形式非线性积分微分方程周期边值问题,利用上下解法证明了解的存在性。
The research methods in this paper provide certain ways for obtaining the traveling wave accurate solutions of the coupling nonlinear differential equations.
文章的研究方法,为求解耦合的非线性微分方程组的行波精确解组探索了蹊径。
In particular, for the case of small initial data with compact support, the author gives the life-span of classical solutions and its application to nonlinear wave equations.
特别地,对紧支集小初值的情况,给出了经典解的生命区间及其在非线性波动方程中的应用。
Applying fixed points theorem, we give the sufficient conditions of the existence of positive ergodic solutions for a class of infinite nonlinear integral equations.
利用不动点理论,给出了一类非线性积分方程正的遍历解存在的充分条件。
We study the oscillation of solutions for a class of even order nonlinear neutral functional differential equations with continuous distributed delay.
研究一类具有连续分布滞量的偶数阶非线性中立型泛函微分方程解的振动性,得到了该类方程的若干新的振动准则。
Studies the existence for two-point boundary value problems of two fourth-order nonlinear equations by using the theories of upper and lower solutions.
利用上下解理论研究了两类四阶非线性方程两点边值问题解的存在性。
In this paper, several existence and uniqueness theorems of solutions are proved for the system of nonlinear random operator equations with stochastic domain by using general random contraction.
本文利用随机收缩,证明具有随机定义域的非线性随机算子方程组的解的存在与唯一性定理,给出非线性随机积分和微分方程组的某些应用,改进和推广了某些结果。
In this thesis, we discuss mainly the existence of (pseudo) almost periodic solutions and (asymptotically) almost automorphic solutions for some nonlinear equations.
本文主要讨论几类非线性方程的(拟)概周期解和(渐近)概自守解的存在性。
The shock wave problems for a class of the nonlinear singularly perturbed equations is studied. Using indirect matching method, the shock solutions of shock wave in an interval are constructed.
研究了一类非线性奇摄动方程的激波问题。利用间接匹配法,构造出激波在区间内的激波解。
Chapter 3 is centered around the existence of periodical solutions for non self-adjoint nonlinear second order difference equations by invoking matrix theory and coincide degree theory.
第三章利用矩阵理论与重合度理论,讨论了一类非自共轭非线性二阶差分方程周期解的存在性问题。
This thesis mainly investigates the existence of positive solutions for some class of dynamic equations on time scales by using topological degree of nonlinear functional analysis.
本文主要利用非线性泛函分析的拓扑度方法来研究时间测度上几类动力方程的正解存在性。
By using fixed point index theory in a cone, we study the existence of positive solutions of boundary value problems for systems of nonlinear second order singular differential equations.
使用锥上拓扑度理论,研究二阶非线性奇异微分方程组两点边值问题正解的存在性。
The minimal and maximal solutions is discussed for nonlinear mixed type impulsive integro-differential equations in Banach spaces.
讨论了Banach空间非线性混合型脉冲积分-微分方程的极小和极大解。
Solutions for a class of third order nonlinear differential equations are studied by using the Leray Schauder fixed point theorem and the method of Liapunov function.
运用Leray - Schauder不动点定理和Luapunov函数,研究了一类三阶非线性微分方程概周期解的存在性。
Solutions for a class of third order nonlinear differential equations are studied by using the Leray Schauder fixed point theorem and the method of Liapunov function.
运用Leray - Schauder不动点定理和Luapunov函数,研究了一类三阶非线性微分方程概周期解的存在性。
应用推荐