In this paper, we mainly discuss the dynamical behavior of a discrete neural model.
本文主要分析了一类离散神经元模型的动力学行为。
The research indicates that nonlinearity has a very important effect on the dynamical behavior of MEMS system.
初步研究表明:非线性对微机械电子系统动力学行为有着严重的重要的影响。
These models reveal the dynamical behavior of the various interactions that specify the energies and lifetimes of complex atoms.
这些模型显示指定复杂的原子的能量和寿命的各种各样的相互作用的动态的行为。
It is shown that the dynamical behavior of the dilute granular flow is different from the Newtonian fluids because of the energy dissipation.
发现颗粒流的速度和密度分布与牛顿流体完全不同,尽管颗粒流在现象上也表现出类似流体的性质。
This article examines the dynamical behavior of stochastic flutter of binary airfoil that is excited by a Gauss white noise by means of numerical simulation.
为考查在高斯白噪声作用下二元机翼随机颤振动力学行为,采用数值仿真的方法对其进行了研究。
The calculation shows that the dynamical behavior of rolling contact about super hard material coatings is very different from the dynamical behavior of rolling contact about ordinary contact.
计算结果表明超硬涂层材料滚动接触的力学行为和一般的滚动接触的力学行为存在很大的不同,主要表现在对最大剪切应力的影响。
Whatever system it is, if it has a tipping point, the universal laws of behavior for dynamical systems apply.
无论什么系统,只要它有转折点,都遵循着动力系统行为的普遍法则。
This graph shows correspondence between the Mandelbrot set and the logistic map, which explains how complex, chaotic behavior can arise from simple non-linear dynamical equations.
这幅图片展示了曼德尔勃特集合(Mandelbrotset)与离散混沌动力系统(logistic map)之间的一致性,这解释了复杂而无序的行为可以由简单的非线性动态方程序中得出。
Lindenstrauss, the ICM citation says, "has made far-reaching advances in ergodic theory," which studies the statistical behavior of dynamical systems.
国际数学联盟在颁奖辞中称Lindenstrauss在遍历理论方面取得了意义深远的进展,遍历理论是用于研究动力系统统计行为的数学分支。
The research work can be classified into three parts: evolution of the spatiotemporal dynamical behavior, control of STC, synchronization of STC and its application.
全文的研究分为三大部分:时空动力学系统复杂行为的演化、时空混沌的控制、时空混沌的同步与应用。
The understanding of the asymptotic behavior of dynamical systems is one of the most important problems of modern mathematical physics.
理解动力系统的渐近行为是研究无穷维动力系统的主要内容,也是当代数学物理的重要问题之一。
A survey is presented on dynamical behavior of neural networks, as well as the methods of research.
对神经网络系统动力学行为研究的国内外概况和研究方法进行了概括。
This provides a feasible testing method for studying the behavior and constitutive relation of rock failure with medium stain rate under dynamical loading or static and dynamical combination loading.
为研究岩石在中等应变速率下的动态加载或动静组合加载的破坏特性及本构关系提供了一种可行的试验方法。
Firstly we introduced the phase plane method in nonlinear dynamics to analyze qualitatively the threshold dynamical behavior of neurons in this thesis.
本文中,我们首先用非线性动力学中的相平面法来定性地分析神经元的阈值特性。
Finally, the asymptotic behavior of solutions is discussed, and by applying permanence theory in semi-dynamical systems sufficient conditions for the permanence of this system are derived.
最后讨论了解的渐近行为,运用半动力系统的一致持续理论给出了正解一致持续的充分条件。
Secondly, the phase planes were introduced to find qualitatively the threshold of dynamical behavior, and the influences of parameters change on saddle point were discussed.
然后,用相平面法来对简化模型的阈值特性进行定性分析,给出了参数变化与二维简化模型中的鞍点电压值变化之间的关系。
Aim Dynamical behavior of a kind of nonlinear SEIRS model of epidemic spread with the saturated rate, which has infective force in both latent period and infected period, is studied.
目的研究一类具有饱和接触率且潜伏期、染病期均传染的非线性SEIRS流行病传播数学模型动力学性质。
This model can be used to explore and analyse the dynamical steering behavior of articulated vehicles.
该模型可用于研究铰接式车辆的转向特性。
The equations of motion governing the quasi_static and dynamical behavior of a viscoelastic Timoshenko beam are derived.
利用哈密尔顿原理在积分型本构模型描述基础上建立粘弹性移动梁的控制方程。
The equations of motion governing the quasi_static and dynamical behavior of a viscoelastic Timoshenko beam are derived.
利用哈密尔顿原理在积分型本构模型描述基础上建立粘弹性移动梁的控制方程。
应用推荐