However, if studied well, this tutorial, combined with the references in Resources, will provide sufficient breadth and depth to master the transformation aspects of the XML certification exam.
不过,只要认真学习,对于掌握XML认证考试的转换部分来说,本教程以及参考资料部分提供的内容提供了足够的广度和深度。
This alone is not sufficient to ensure that any given transformation is going to be used correctly.
仅仅这样不足以确保能够正确地使用任意给出的转换。
Providing the transformation functionality to a developer is not sufficient.
为开发人员提供转换功能是不够的。
By the relation transvection, we obtain two necessary and sufficient conditions for the transformation being linear transformation in Euclid Spaces, and out of it, we have got some conclusions.
借助内积关系,给出了欧氏空间的变换是线性变换的两个充要条件,并由此得到一些相关结论。
A few good necessary and sufficient conditions are given by using length relation for symmetrical transformation on Euclidean space.
利用长度关系给出了欧氏空间的变换为对称变换的若干个充要条件。
A few good necessary and sufficient conditions are given by using inner product and length relation for antisymmetric transformation on Euclidean space.
借助内积与长度与夹角给出了欧氏空间的变换是反对称变换的若干个充要条件。
A few good necessary and sufficient conditions are given by using length relation for symmetrical transformation on Euclidean space.
借助内积与长度与夹角给出了欧氏空间的变换是反对称变换的若干个充要条件。
A few good necessary and sufficient conditions are given by using length relation for symmetrical transformation on Euclidean space.
借助内积与长度与夹角给出了欧氏空间的变换是反对称变换的若干个充要条件。
应用推荐