Certainly, with the integration of rough structure and algebra structure, topology structure, order structure and the other structures, some new vital mathematical branches will be emerged.
当然,随着粗糙结构与代数结构、拓扑结构、序结构等各种结构的不断整合,必将不断涌现出新的富有生机的数学分支。
Certainly, with integration of rough structure and algebra structure, topology structure, order structure and the other structure, some new vital mathematical branches will be emerged.
当然,随着粗糙结构与代数结构、拓扑结构、序结构等各种结构的不断整合,必将不断涌现新的富有生机的数学分支。
It reflects the algebra in other algebraic structure of the basic idea.
它体现了代数学中研究其他代数结构的基本思路。
In the last part, we further generalize left symmetric algebra and left symmetric structure on Lie algebras into Lie color algebras.
最后一部分中,我们讨论左对称代数和李代数上的左对称结构在着色李超代数中进一步的推广。
The structure of the idempotent elements, regular elements and maximal subgroups and the number of the idempotent elements and regular elements in Boolean group algebra are given.
给出了布尔群代数半群中的幂等元、极大子群和正则元的结构以及幂等元和正则元的个数。
We also prove that every 2-local isomety of UHF algebra is linear by studying the structure of the surjective isometry on UHF algebra.
对于UHF代数上满等距的结构,还证明了UHF代数上的2局部(满线性)等距是线性的。
Through commenting on the multiple dimensional character of Karnaugh structure, a new algebra-geometry algorithm with its correctness and efficiency is presented.
通过对卡诺结构多维性的分析讨论,推介一种新的几何代数算法,并充分论证其正确性和有效性。
Also some concepts as moment invariants polynomial and moment invariants polynomial space were discussed so as to characterize its algebra structure.
不变矩多项式和不变矩多项式空间概念的引入,可以赋予不变矩多项式空间代数结构特征。
The goal of this paper is to specify abstract data type and provide its mathematical meaning by using algebra structure;
本文的目的在于利用抽象代数结构来描述抽象数据类型并给出它的数学含义;
We study the structure and properties of a necklace Lie algebra.
本文探讨项链李代数的结构及性质。
Applying these new ways and the algebra structure of sub algebra, we can study the mathematics essence of the concepts thoroughly.
应用这些新方法和子代数的性质可以深入研究概念的数学本质。
Applying these new ways and the algebra structure of sub algebra, we can study the mathematics essence of the concepts thoroughly.
应用这些新方法和子代数的性质可以深入研究概念的数学本质。
应用推荐