Highly precise solutions both in time and in space can be reached by solving wave equation with high order finite difference scheme of staggered grid under the condition of stability.
用交错网格的高阶有限差分方法解波动方程,在满足稳定性要求时,可获得时间和空间都是高阶精度的结果。
The results show that the staggered-grid high-order finite-difference method can satisfy the demands of engineering with high accuracy and rapid computation.
结果表明:交错网格高阶有限差分波场数值模拟具有较高的精度,计算速度快,基本能满足工程上的需要。
First, constructed high order staggered-grid difference formulas, and discussed the stability and numerical dispersion of staggered grid method.
首先,构建高阶交错网格差分公式,讨论了交错网格法的稳定性与数值频散。
This article provides the application of the high-order, staggered-grid, finite-difference scheme to model elastic wave propagation in 3-d isotropic media.
本文应用交错网格高阶有限差分方法模拟弹性波在三维各向同性介质中的传播。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
Here, we use second-order, temporal - and high-order spatial finite-difference formulations with a staggered grid for discretization of the 3-d elastic wave equations of motion.
采用时间上二阶、空间上高阶近似的交错网格高阶差分公式求解三维弹性波位移-应力方程,并在计算边界处应用基于傍轴近似法得到的三维弹性波方程吸收边界条件。
应用推荐