The principle and process of the split-step Fourier method(SSFM)is introduced.
介绍了分步傅里叶数值方法的原理和步骤。
In this thesis the coupled nonlinear Schrodinger equation is solved by means of split-step Fourier transform.
本文采用分步傅立叶变换法求解耦合非线性薛定谔方程,对偏振模色散进行了数值模拟。
The model is based on a modification to the smooth-earth parabolic equation, and uses the split-step Fourier algorithm.
以“热像”形成的衍射理论模型和分步傅里叶算法为基础,模拟研究了厚介质情况下“热像”的形成特点。
This paper will use small signal analysis and split-step Fourier to solve the complex nonlinear Schrodinger equation (NLSE).
本文将结合分步傅里叶方法和小信号分析法来求解复杂的非线性薛定谔方程(NLSE)。
Numerical calculation methods are usually more widely applied in NLSE because of its complexity. The most commonly used algorithm is the split-step Fourier method (SSFM).
由于NLSE的复杂性,通常情况下无法求出解析解,需要利用数值计算的方法对其进行研究,其中分步傅立叶算法是应用较为广泛的一种算法。
Stemming from the coupled nonlinear Schrdinger equation, we use the split-step Fourier transforms(SSFT) to study the factors which influence the signal pulse's transmission.
从非线性薛定谔耦合方程出发,利用分步傅立叶的方法得到了脉冲的动力学方程。
The fiber propagation model can be described by the nonlinear Schrodinger equation, and the split-step Fourier method is used extensively to solve the pulse-propagation problem.
光纤传输模型用非线性薛定谔方程描述,利用分步傅立叶方法可计算光脉冲在光纤中的传输。
The processes responsible for the generation of a supercontinuum are identified though the simulation of the nonlinear Schrodinger equation by Split-step Fast Fourier Transform Method.
利用分步傅立叶法数值模拟了广义的非线性薛定谔方程, 分析研究了 多种条件下超 连续光谱的产生过程;
The processes responsible for the generation of a supercontinuum are identified though the simulation of the nonlinear Schrodinger equation by Split-step Fast Fourier Transform Method.
利用分步傅立叶法数值模拟了广义的非线性薛定谔方程, 分析研究了 多种条件下超 连续光谱的产生过程;
应用推荐