Speech segmentation is the foundation of some applications such as speech recognition and spoken document retrieval.
语音分割是语音识别和语音文档检索等众多语音应用的基础。
It is proved that this method has good ability and high robustness, and that it is an effect method in speech segmentation.
利用新方法进行分段并测试其鲁棒性,实验证明新方法分段效果好且鲁棒性强,是一种有效的音素分段算法。
This paper concentrates on robust automatic speech segmentation of dialectal speech, which is essential for building dialectal speech corpus.
本文研究方言口音普通话语音自动切分算法,主要服务于方言口音普通话语音库建设。
The role of dialectal speech modeling is to adjust model parameters and structure of automatic speech segmentation systems to make sure that the system can be used in dialectal circumstances.
方言口音建模是本研究的关键,其作用是利用方言口音语音数据调整系统参数或结构,使其体现方言口音特征。
This segmentation algorithm combines the speech segmentation approach based on energy with the characters of the database. Now, the automatic segmentation in the Bimodal Database can be realized.
该切分算法在基于能量的语音切分算法基础上,结合了双模态语料库的一些特征,实现了对语料的自动切分。
This paper presented a syllable segmentation method for Chinese connected speech.
本文提出一种汉语语音连接词音节分割方法。
Experimental verification shows that the method of segmentation is effective in isolating the syllables in continuous Chinese speech.
实验验证表明,本文的分段方法对连续汉语语音的音节分割是有效的。
The former includes Chinese word segmentation, part - of - speech tagging, pinyin tagging, named entity recognition, new word detection, syntactic parsing, word sense disambiguation, etc.
前者涉及到词法、句法、语义分析,包括汉语分词、词性标注、注音、命名实体识别、新词发现、句法分析、词义消歧等。
The former includes Chinese word segmentation, part-of-speech tagging, pinyin tagging, named entity recognition, new word detection, syntactic parsing, word sense disambiguation, etc .
前者涉及到词法、句法、语义分析,包括汉语分词、词性标注、注音、命名实体识别、新词发现、句法分析、词义消歧等。
In this paper we propose a decision tree-based method, which combined with rules for utterance segmentation in spontaneous speech.
本文提出了一种基于决策树的并结合规则的新方法来解决口语句子边界自动切分的问题。
The goal of the homework is to design and evaluate a method for sentence segmentation of speech transcripts.
该家庭作业的目标是设计和评价一个语音转录文本的句子切分方法。
We analyzed, designed and achieved a module of Chinese word segmentation and Part-Of-Speech Tagging based on Condition Random Fields model.
分析、设计和实现了一个基于条件随机场模型的汉语分词和词性标注模块。
Others such as machine translation ( MT ), speech synthesis, automatic classification, automatic summarization, automatic proofreading etc. , require the use of word segmentation.
其他的比如机器翻译(MT)、语音合成、自动分类、自动摘要、自动校对等等,都需要用到分词。
Others such as machine translation ( MT ), speech synthesis, automatic classification, automatic summarization, automatic proofreading etc. , require the use of word segmentation.
其他的比如机器翻译(MT)、语音合成、自动分类、自动摘要、自动校对等等,都需要用到分词。
应用推荐