A well known problem in optimization theory asks for a relatively easy way of finding a spanning subgraph with a special property.
最优化理论中的一个有名的问题要求:用比较容易的方法来寻求具有某种特殊性质的生成子图。
In this paper we proved that every near triangulation without separating triangles has a 2-connected spanning subgraph of maximum degree at most 3 which is the best possible.
证明了每一个无可分离三角形的几乎三角剖分图均存在一个2-连通支撑子图,其最大度至多3.并且,这一结果是最佳可能的。
A graph G is supereulerian if G has a spanning eulerian subgraph.
若图G含有生成欧拉子图,则称G是超欧拉的。
We consider three types of probability measures on Q, the set of subgraphs of g, which govern a random spanning tree, a random spanning forest, and a random connected subgraph respectively.
本文研究图g的子图空间g上的三类概率测度,它们分别刻画图的随机扩张树,随机扩张森林和随机连通子图。
We consider three types of probability measures on Q, the set of subgraphs of g, which govern a random spanning tree, a random spanning forest, and a random connected subgraph respectively.
本文研究图g的子图空间g上的三类概率测度,它们分别刻画图的随机扩张树,随机扩张森林和随机连通子图。
应用推荐