• This article discusses the practical space of data mining in digital library and its great value in digital library is also discussed.

    描述数据挖掘技术与方法基础之上,探讨了数据挖掘数字图书馆中的应用空间以及所具有的巨大应用价值

    youdao

  • A supervoxel data model is introduced to represent exactly the complex space distribution of geological data in the coal mining area.

    首先建立了一种能够有效地表达矿区地质数据复杂空间分布超体元数据模型

    youdao

  • The search space of Multi-relational data mining algorithm becomes larger and more complex.

    多关系数据挖掘算法搜索空间变得更大复杂

    youdao

  • Since aims at small texts data mining, its complexity of time and space is not high. So it can be said this algorithm will become one kind of practical and effective information retrieval technology.

    由于针对文本数据挖掘,本文研究的算法时间空间复杂度因此有望成为实用有效信息检索技术

    youdao

  • By reduction processing to the import space, this method adopts artificial neural network for data mining on the reduced training data.

    通过属性约技术神经网络输入属性空间进行约简,采用神经网络对约后的数据进行挖掘

    youdao

  • For more effective meteorological data mining, this thesis introduces the quotient space granular computing theory, grey model, structural machine learning algorithm and so on.

    为了更加有效地进行瓦斯数据挖掘本文引入空间粒度计算理论灰色模型、覆盖算法等。

    youdao

  • This article describes the actuality of the data-mining and analysis, and points out some problems that appear in the data-mining field through a space data-mining and analysis project.

    本文报告了数据挖掘分析现状通过一个现实航天数据挖掘分析的项目构架提出当今数据挖掘领域所普遍存在没有被注意到的一些问题

    youdao

  • Thus, it is important to research data stream mining algorithms having higher time and space efficiency, and to aim at resolving data mining tasks often used in system simulation.

    因此针对仿真常用数据挖掘任务研究时空效率高效的相应数据挖掘算法具有重要意义

    youdao

  • Missing values in traffic flow data should be imputed because complete data are needed for space-time data mining.

    交通流量时空数据挖掘需要完整的数据,因此必须处理交通流量数据中的缺失

    youdao

  • Traditional data mining algorithms aiming at static datasets can't be used to mine data streams directly, neither do they have the time and space efficiency.

    传统面向静态数据算法无法直接用于挖掘数据,而现有数据流挖掘算法存在时空效率缺陷。

    youdao

  • Traditional data mining algorithms aiming at static datasets can't be used to mine data streams directly, neither do they have the time and space efficiency.

    传统面向静态数据算法无法直接用于挖掘数据,而现有数据流挖掘算法存在时空效率缺陷。

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定