In this paper, a smooth approximation-BFGS method for solving inequality constrained nonlinear programming is presented.
本文对不等式约束非线性规划提出一种光滑逼近- BFGS法。
The hinging hyperplanes model is improved and an indirect smooth approximation algorithm based on hinge-finding algorithm is proposed.
改进了链接超平面模型,并在找链接算法的基础上给出了一个处处光滑的间接光滑逼近算法。
The algorithm can obtain a smooth approximation result, and in the meantime it holds the simplicity and the effectiveness of hinge-finding algorithm.
该算法在保持找链接算法简洁这一优势的同时,给出了处处光滑的逼近结果。
Numerical examples give evidence that these conditions can effectively control form of surface in smooth approximation for implicit algebraic surfaces.
数值例说明这些保凸条件在隐式曲面光滑逼近中能有效地控制曲面。
In this paper, we discussed the approximation errors of complex cubic interpolation spline on open smooth curves under the second boundary condition and got the better results.
本文就非闭光滑曲线上关于第二类边界条件的复三次样条函数的逼近误差进行了论讨,取得了较好的结果。
The interpolation, approximation and other things for curves on smooth surfaces with computer are studied.
本文研究光滑曲面上曲线的计算机表示、插值与逼近等。
This method can suppress the artifacts effectively so that de_noised signal is more smooth and has better approximation to original signal.
该方法能有效地消除人为的振荡现象,使消噪后的信号更加光滑,更好地逼近真实信号。
Optimization techniques are being applied to solve the problems of surface interpolation, approximation, smooth joining and fairing, aiming at corresponding goal functions.
只要选用相应的目标函数,曲面插值、逼近、拼接和光顺都可以使用优化技术统一处理。
This article introduces least square method of unanimous approximation and smooth tolerance of segmented circular arc fit for planar range of Points.
本文用最小二乘法一致逼近及容差平滑分段圆弧拟合平面点列。
Performances of approaching and approximate error were given for the new smooth function, as well as the study of convergence and the approximation limit of optimum for the new model.
还给出了新光滑函数的逼近性能和精度分析以及新模型的收敛性证明和最优解的逼近上限。
Performances of approaching and approximate error were given for the new smooth function, as well as the study of convergence and the approximation limit of optimum for the new model.
还给出了新光滑函数的逼近性能和精度分析以及新模型的收敛性证明和最优解的逼近上限。
应用推荐