Semantic similarity is the crucial factor affecting the precision rate and recall rate of semantic information retrieval system.
语义相似度是影响语义检索系统查准率和查全率的重要因素。
Then the paper shows the feature of semantic information retrieval and the effect of semantic inference mechanism within semantic information retrieval.
论文结合该系统展示了语义检索的特性以及语义推理机制在语义检索中的作用。
The paper starts from the status quo of traditional IR technic, to analyse its main problems, then adequately expatiates how semantic information retrieval solves these problems.
论文首先从传统信息检索技术的现状入手,分析其主要问题,阐述语义检索如何解决这些问题。
Based on these technics the paper makes a deep research on the working process and mechanism of semantic retrieval, and makes the design of semantic information retrieval systems.
然后论文结合这些理论技术深入探讨了语义检索系统的工作流程、机制,完成了语义检索系统的设计。
The former allows easy searches, semantic context and information retrieval, whereas the latter enables efficient editing in an advanced hypertext environment.
前者有助于搜索、语义上下文和信息检索,而后者让用户能够在高级超文本环境中进行高效的编辑。
By semantic analysis and semantic inference, the relationship among resource could be fully used to implement the relevant information resource retrieval and semantic fusion.
通过语义分析和语义推理,可以充分利用信息资源之间的关系实现相关信息资源检索与语义融合。
SIR can significantly enhance the recall and precision of the information retrieval by the semantic inference. Finally, the practicability of the SIR model is analyzed.
最后分析了SIR的可用性,证明了SIR可极大地提高语义网上信息检索的查全率和查准率。
Semantic retrieval can be used to overcome the shortcomings of traditional retrieval techniques based on lexical matching, and is the trend of information retrieval.
语义检索能克服传统的基于关键词匹配检索的缺点,是信息检索的发展趋势。
This paper presented a method of medical images retrieval about sternums based on texture features combining with semantic information.
提出一种结合图像分块纹理特征和语义信息的医学胸片图像检索方法。
The traditional component description and retrieval way lacks of semantic description of the information, it is hard to find the exact component matching to the requirements, and therefor.
传统的构件描述与检索方式,由于缺乏构件的语义信息描述,用户难以精确检索到与需求匹配的构件资源,所以不能很好地实现资源共享和复用的目的。
None but combine the multi-character, especially semantic information, can the capability of retrieval system approach the human mentally level.
只有结合图像的多种信息,特别是语义信息,才能使检索系统的能力尽可能接近人的理解水平。
A semantic retrieval method based on domain ontology is a useful way to resolve the problems in the information retrieval area.
基于领域本体的语义检索被认为是解决目前信息检索领域中所面临的困难的途径之一。
This model retrieves information on semantic using natural language processing technique so as to overcome the shortcoming of traditional retrieval methods and enhance efficiency.
该模型利用自然语言处理技术,在语义层次上进行查询和检索,克服了传统检索方法的不足,提高了查全率与查准率。
In traditional information retrieval way, because the information lacks the semantic description, users are difficult to find the information they need.
传统信息检索方式下,由于信息缺少统一的语义描述,用户很难找到与需求相关的信息。
Using co-word analysis to construct concept space and realize semantic retrieval is one of the research hotspots in information organization and retrieval fields at present.
利用共现分析构建概念空间,实现语义检索,是当前信息组织和检索领域研究热点之一。
How to enable the information to have the application procedure understandable meaning and realize semantic retrieval, these questions are the challenges which the information retrieval domain faces.
如何使信息具有应用程序可以理解的语义,实现信息资源的语义检索,这些问题是信息检索领域所面临的挑战。
How to more deeply achieve the semantic information in the process of semantic retrieval, and embody the retrieval algorithm more deeply, are our goals in the future.
如何在语义检索过程中更深层次地体现语义信息,以及完善检索算法是我们今后工作的目标。
But most information retrieval techniques are based on low-level features, which are quite different from the semantic concepts in human thought, affecting the retrieval results inevitably.
但是现有的检索技术多是基于底层视觉特征的检索,与人们所能理解的高层语义概念相去甚远,这严重地影响检索的实际效果。
With the emergence of semantic web, semantic-based information retrieval has become an effective way to improve retrieval ability.
随着语义网的出现,基于语义也逐渐成为提高信息检索能力的一个有效途径。
To enhance recall ratio and precision ratio of information retrieval, the paper designs the model of spam filtering based on semantic grid.
本文以增强语义信息,提高搜索的查全率和查准率为目标,设计了基于语义网格的垃圾邮件过滤模块。
Research into information retrieval based on the combination of keyword and semantic concept;
新模型合理地考虑了术语关系,实现了基于语义概念的检索。
Research into information retrieval based on the combination of keyword and semantic concept;
新模型合理地考虑了术语关系,实现了基于语义概念的检索。
应用推荐