• The result is extended in CHENG (1977) and li (1996) to the space-like submanifolds with constant scalar curvature in an indefinite space form.

    我们把CHENG (1977),LI(1996)结果推广到了非空间形式中常数量曲率的类空子流形中

    youdao

  • The paper discusses on the hypersurfaces in locally symmetric manifolds with constant scalar curvature and gets a pinching theorem which improves the known results.

    研究局部对称空间具有数量曲率的紧致超曲面,给出这类超曲面的一个拼挤定理改进了相关作者的结论

    youdao

  • In this paper, the authors discuss the submanifolds with constant scalar curvature in a locally symmetric and conformally flat space, and obtain some intrinsic rigidity theorems.

    该文研究了局部对称形平坦空间具有数量曲率的紧致子流形,证明了类子流形的某些内蕴刚性定理。

    youdao

  • By using an inequality relation between a scalar curvature and the length of the second fundamental form, it is proved that sectional curvatures of a submanifold must be nonnegative (or positive).

    利用数量曲率与第二基本形式长度之间一个不等式关系,证明了其子流形截面曲率一定(或者为正),并将此应用到紧致子流形上,得到一些结果。

    youdao

  • Besides that, we presents the gravitational wave energy density under the weak field situation and gives the x - y plane numerical calculation to curvature scalar R and energy density .

    还有计算了在条件近似下引力驻能量密度,并给出曲率标量R能量密度平面数值计算。

    youdao

  • Besides that, we presents the gravitational wave energy density under the weak field situation and gives the x - y plane numerical calculation to curvature scalar R and energy density .

    还有计算了在条件近似下引力驻能量密度,并给出曲率标量R能量密度平面数值计算。

    youdao

$firstVoiceSent
- 来自原声例句
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定
小调查
请问您想要如何调整此模块?

感谢您的反馈,我们会尽快进行适当修改!
进来说说原因吧 确定