The result is extended in CHENG (1977) and li (1996) to the space-like submanifolds with constant scalar curvature in an indefinite space form.
我们把CHENG (1977),LI(1996)的结果推广到了非定空间形式中常数量曲率的类空子流形中。
The paper discusses on the hypersurfaces in locally symmetric manifolds with constant scalar curvature and gets a pinching theorem which improves the known results.
研究局部对称空间中具有常数量曲率的紧致超曲面,给出这类超曲面的一个拼挤定理,改进了相关作者的结论。
In this paper, the authors discuss the submanifolds with constant scalar curvature in a locally symmetric and conformally flat space, and obtain some intrinsic rigidity theorems.
该文研究了局部对称共形平坦空间中具有常数量曲率的紧致子流形,证明了这类子流形的某些内蕴刚性定理。
By using an inequality relation between a scalar curvature and the length of the second fundamental form, it is proved that sectional curvatures of a submanifold must be nonnegative (or positive).
利用数量曲率与第二基本形式长度之间的一个不等式关系,证明了其子流形的截面曲率一定非负(或者为正),并将此应用到紧致子流形上,得到一些结果。
Besides that, we presents the gravitational wave energy density under the weak field situation and gives the x - y plane numerical calculation to curvature scalar R and energy density .
还有计算了在弱场条件近似下引力驻波的能量密度,并给出曲率标量R和能量密度平面的数值计算。
Besides that, we presents the gravitational wave energy density under the weak field situation and gives the x - y plane numerical calculation to curvature scalar R and energy density .
还有计算了在弱场条件近似下引力驻波的能量密度,并给出曲率标量R和能量密度平面的数值计算。
应用推荐