Satisfiability (SAT) problem has been the core problem of research on computational theory.
可满足性问题(SAT)是当代理论计算机科学的核心问题。
When the domain of interpretation is finite and its size is a fixed positive integer, the satisfiability problem in the first-order logic can be reduced to SAT.
当解释的论域是一个固定大小的有限集合时,一阶逻辑公式的可满足性问题可以等价地归约为SAT 问题。
Finally, the satisfiability of a SAT problem is verified by the covering of orthogonal clause group on the whole assignment space.
最后,根据正交子句组对整个赋值空间的覆盖情况来判断SAT是否满足。
The satisfiability problem of conjunction normal form (abbreviate sat problem) is an NP_complete problem.
合取范式可满足性问题(简称SAT问题)是一个NP完全问题。
The satisfiability of conjunction normal form (abbreviate sat problem) is a typical NP-complete problem.
合取范式可满足性问题(简称SAT问题)是一个NP完全问题。
The satisfiability of conjunction normal form (abbreviate sat problem) is a typical NP-complete problem.
合取范式可满足性问题(简称SAT问题)是一个NP完全问题。
应用推荐