The fast Fourier transform (FFT) will bring on higher error under nonsynchronous sampling and truncated non-integral period, thus more accurate interharmonic parameter values cannot be obtained.
快速傅里叶变换在非同步采样和非整数周期截断的情况下存在较大误差,无法获得较精确的间谐波参数值。
Sampling segmented K-space data makes a truncation of MR signal which is with continuous frequencies, leads to the truncation artifact in the reconstruction images after Fourier transform.
由于采集部分K空间数据成像是对连续频率MR信号的截断,导致经过傅立叶变换后的重建图像中出现截断伪影。
Anew approach, named Modified Fast Fourier Transform (MFFT), is proposed to analyze the components of a periodic signal when sampling duration is not equal to an integer multiple of the fundamentals.
提出了一种改进的快速付立叶变换(MFFT)的计算方法,在采样的持续时间不是信号周期整数倍的条件下,能够准确地提供此信号中各周期分量的特性。
Compared with traditional inverse Fourier transform method, which used zeros padding method, at the same condition of sampling resolution, the method proposed could decrease the calculation load.
与传统的数据长度补零逆傅里叶变换方法相比,在相同的采样分辨率条件下,该方法能有效减小计算量。
Since the Fast Fourier Transform (FFT) was presented, the harmonics measurement based on Fourier Transform which requires synchronous sampling has been used widely.
自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量便得到了广泛应用。
Sampling data using fast Fourier transform (FFT) to numerical algorithm has obtained the high accuracy air shaft synthesis parameter survey.
对采样后的数据运用快速傅立叶变换(FFT)进行数值计算,获得了高精度的风井综合参数的测量。
Sampling data using fast Fourier transform (FFT) to numerical algorithm has obtained the high accuracy air shaft synthesis parameter survey.
对采样后的数据运用快速傅立叶变换(FFT)进行数值计算,获得了高精度的风井综合参数的测量。
应用推荐