Secondly, to perfect the known restoring models, a new space-adaptive regularization model of image restoration is constructed by redesigning regularized parameter and regularized item.
第二,在现有复原模型的完善上,重新构建正则化参数与正则化项,构造了新的具有空间自适应性质的正则化图像复原模型。
Through changing regularized parameter values and selecting a reasonable initial regularized parameter value in inversion procedure, the inversion result and convergent speed are improved.
在反演过程中,通过改变正则参数数值以及合理地选择正则参数的初值,改善反演结果,提高反演收敛速度。
By apriori choosing regularization parameter, optimal convergence order of the regularized solution is obtained.
通过适当选取正则参数,证明了正则解具有最优的渐近收敛阶。
The approximation of the primal quadratic optimization model can be obtained by solving the regularized one and adjusting the homotopy parameter.
然后通过调节同伦参数,对每个不同的参数用复制子等式进行求解,从而得到原二次规划模型近似解。
The approximation of the primal quadratic optimization model can be obtained by solving the regularized one and adjusting the homotopy parameter.
然后通过调节同伦参数,对每个不同的参数用复制子等式进行求解,从而得到原二次规划模型近似解。
应用推荐