In the algorithm, the radial-basis function neural network (RBFNN) is utilized as forward model, and the IGLSA is used to solve the optimization problem in the inverse problem.
该算法中,径向基函数神经网络(RBFNN)用作前向模型,IGLSA用于求解逆问题中的优化问题。
Afterward, its output is estimated by radial basis function neural network (RBFNN) for extracting SEP features.
后级使用径向基神经网络作信号拟合,提取SEP信号的特征。
The method of radial basis function neural network (RBFNN) is given to correct the nonlinear errors of the sensors. A BP neural network has been developed to solve the same problem for comparison.
提出了传感器非线性误差校正的径向基函数(RBF)神经网络方法,并与采用BP神经网络校正非线性误差进行了比较。
The method of radial basis function neural network (RBFNN) is given to correct the nonlinear errors of the sensors. A BP neural network has been developed to solve the same problem for comparison.
提出了传感器非线性误差校正的径向基函数(RBF)神经网络方法,并与采用BP神经网络校正非线性误差进行了比较。
应用推荐