Yale's team isn't the first to build a quantum processor on the model of a traditional microchip.
耶鲁并非第一个建造常规尺寸大小量子处理器的团队。
Researchers at the University of California, Santa Barbara, have become the first to combine a quantum processor with memory that can be used to store instructions and data.
加利福尼亚大学的研究人员SantaBarbara成为了第一个将量子处理器和存储器组合起来的人,这使(量子计算机)具有了储存指令和数据的能力。
Now physicist Leonardo DiCarlo of Yale University, New Haven, and his colleagues have made the first solid-state quantum processor, using similar techniques to the silicon chip industry.
当下,纽黑文耶鲁大学的物理学家LeonardoDiCarlo,与他的同事们一起协作,业已打造完成首块固态量子处理器,所用的技术与硅芯片大同小异。
The processor has used programs called quantum algorithms to solve two different problems.
该处理器使用了被称为量子算法的程序,以解决两个不同的问题。
The result is a larger, tangible processor that's capable of using quantum properties to run super-simple functions.
结果就是,一台更大、拥有明确形态的计算机可以使用量子特性去运行一些超级简单的功能。
According to the order stored in the program register, the processor operates the quantum state in the data register.
可程序化量子处理器根据程序寄存器中存储的指令对数据寄存器中的量子态作指定的操作。
Thus exploring the robustness features of quantum information processing system in presence of various imperfections will be very helpful to design fault-tolerant quantum information processor.
因此分析量子信息处理系统在各种干扰下的演化规律,研究干扰对量子计算鲁棒性的影响,将非常有助于设计高可靠性的容错量子计算系统。
Thus exploring the robustness features of quantum information processing system in presence of various imperfections will be very helpful to design fault-tolerant quantum information processor.
因此分析量子信息处理系统在各种干扰下的演化规律,研究干扰对量子计算鲁棒性的影响,将非常有助于设计高可靠性的容错量子计算系统。
应用推荐