In 2d polar coordinates, the exact solution to the Schrdinger equation was used to calculate the perturbation integral in a parabolic confinement potential.
受限势采用抛物形势,在二维平面极坐标下,用薛定谔方程的精确解析解进行计算。
The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential.
数值计算结果显示,电子能级敏感地依赖于量子环半径,能级存在极小值,这是由于限制势采用抛物势的结果。
The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential.
数值计算结果显示,电子能级敏感地依赖于量子环半径,能级存在极小值,这是由于限制势采用抛物势的结果。
应用推荐